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Abstract. In this paper, we consider the following firefighter problem on a finite
graph G = (V,E). Suppose that a fire breaks out at a given vertex v ∈ V . In each
subsequent time unit, a firefighter protects one vertex which is not yet on fire, and then
the fire spreads to all unprotected neighbours of the vertices on fire. The objective of
the firefighter is to save as many vertices as possible.

The surviving rate ρ(G) of G is defined as the expected percentage of vertices that
can be saved when a fire breaks out at a random vertex of G. Let ε > 0. We show
that any graph G on n vertices with at most ( 15

11 − ε)n edges can be well protected,
that is, ρ(G) > ε

60 > 0. Moreover, a construction of a random graph is proposed to

show that the constant 15
11 cannot be improved.

1. Introduction

The following firefighter problem on a finite graph G = (V,E) was introduced by
Hartnell at the conference in 1995 [8]. Suppose that a fire breaks out at a given vertex
v ∈ V . In each subsequent time unit, a firefighter protects one vertex which is not yet
on fire, and then fire spreads to all unprotected neighbours of the vertices on fire. (Once
a vertex is on fire or gets protected it stays in such state forever.) Since the graph is
finite, at some point each vertex is either on fire or is protected by the firefighter, and
the process is finished. (Alternatively, one can stop the process when no neighbour of
the vertices on fire is unprotected. The fire will no longer spread. In such a case, we
will still call all non-burning vertices protected, even though some of them were not
selected by the firefigher.) The objective of the firefighter is to save as many vertices
as possible. Today, 15 years later, our knowledge about this problem is much greater
and a number of papers have been published. We would like to refer the reader to the
survey of Finbow and MacGillivray for more information [13].

In this paper, we would like to focus on the following property. Let sn(G, v) denote
the number of vertices in G the firefighter can save when a fire breaks out at vertex
v ∈ V , assuming the best strategy is used. The surviving rate ρ(G) of G, introduced
in [11], is defined as the expected percentage of vertices that can be saved when a fire
breaks out at a random vertex of G (uniform distribution is used), that is,

ρ(G) =
1

n2

∑
v∈V

sn(G, v).
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It is not difficult to see that for cliques ρ(Kn) = 1
n
, since no matter where a fire breaks

out only one vertex can be saved. For paths we get that

ρ(Pn) =
1

n2

∑
v∈V

sn(G, v) =
1

n2
(2(n− 1) + (n− 2)(n− 2)) = 1− 2

n
+

2

n2

(one can save all but one vertex when a fire breaks out at one of the leaves; otherwise
two vertices are burned). It is not surprising that almost all vertices on a path can be
saved, and in fact, all trees have this property. Cai, Cheng, Verbin, and Zhou [7] proved
that the greedy strategy of Hartnell and Li [9] for trees saves at least 1 − Θ(log n/n)
percentage of vertices on average for an n-vertex tree. Moreover, they managed to
prove that for every outerplanar graph G, ρ(G) ≥ 1 − Θ(log n/n). Both results are
asymptotically tight and improved earlier results of Cai and Wang [7]. However, this
does not mean that it is easy to find the exact value of ρ(G). It is known that the
firefighter problem is NP-complete even for trees of maximum degree three [12].

The main focus of this paper is on sparse graphs. It is clear that sparse graphs are
easier to control so their surviving rates should be relatively large. Finbow, Wang, and
Wang [14] showed that any graph G with average degree strictly smaller than 8/3 has
the surviving rate bounded away from zero. Formally, it has been shown that any graph
G with n ≥ 2 vertices and m ≤ (4

3
−ε)n edges satisfies ρ(G) ≥ 6ε

5
> 0, where 0 < ε < 5

24
is a fixed number. We improve their result by proving that any graph G with average
degree strictly smaller than 30/11 has the surviving rate bounded away from zero.

Theorem 1. Suppose that graph G has n ≥ 2 vertices and m ≤ (15
11
− ε)n edges, for

some 0 < ε < 1
2
. Then, ρ(G) ≥ ε

60
.

(Let us note that our goal is to show that for sparse enough graphs the surviving rate is
bounded away from zero, not to show the best lower bound for ρ(G). To achieve this,

any explicit bound, say, exp(−ε−1010) > 0 would be as valuable as ours, and hence it
is desired to aim for as simple argument as possible. The constant 1

60
can be improved

with more careful approach—we will discuss this briefly after the proof of Lemma 8.)
Section 3 is devoted to proving this result.

On the other hand there are some dense graphs with large surviving rates (take,
for example, a large collection of cliques). However, in Section 2 we construct a sparse
random graph on n vertices with the surviving rate tending to zero as n goes to infinity.
Hence the result is tight and the constant 15

11
cannot be improved.

2. Random graphs are burning fast

The result of Finbow, Wang, and Wang [14] mentioned earlier is very interesting but
it seems that with more complicated argument one should be able to improve their
result, including slightly sparser graphs. But the question becomes how far this can be
pushed? Where is the limit? Are there any sparse graphs that are burning fast? In
other words, is there a family of sparse graphs in which the surviving rate is as close
to zero as possible? The most natural graph to try is a random 3-regular graph and,
indeed, a large random graph is burning fast with probability close to one. This implies



GRAPHS WITH AVERAGE DEGREE SMALLER THAN 30
11

BURN SLOWLY 3

that the constant 4
3

in the result from [14] cannot be replaced by 3
2
. In order to warm

up, we start with proving this fact (see Theorem 2).

Our results in this section refer to the probability space of random d-regular graphs
with uniform probability distribution. This space is denoted Gn,d, and asymptotics
(such as ‘asymptotically almost surely’, which we abbreviate to a.a.s.) are for n→∞
with d ≥ 2 fixed, and n even if d is odd.

Instead of working directly in the uniform probability space of random regular graphs
on n vertices Gn,d, we use the pairing model of random regular graphs, first introduced
by Bollobás [4], which is described next. Suppose that dn is even, as in the case
of random regular graphs, and consider dn points partitioned into n labeled buckets
v1, v2, . . . , vn of d points each. A pairing of these points is a perfect matching into dn/2
pairs. Given a pairing P , we may construct a multigraph G(P ), with loops allowed, as
follows: the vertices are the buckets v1, v2, . . . , vn, and a pair {x, y} in P corresponds
to an edge vivj in G(P ) if x and y are contained in the buckets vi and vj, respectively.
It is an easy fact that the probability of a random pairing corresponding to a given
simple graph G is independent of the graph, hence the restriction of the probability
space of random pairings to simple graphs is precisely Gn,d. Moreover, it is well known

that a random pairing generates a simple graph with probability asymptotic to e(1−d
2)/4

depending on d but not on n. Therefore, any event holding a.a.s. over the probability
space of random pairings also holds a.a.s. over the corresponding space Gn,d. For this
reason, asymptotic results over random pairings suffice for our purposes. One of the
advantages of using this model is that the pairs may be chosen sequentially so that the
next pair is chosen uniformly at random over the remaining (unchosen) points. For
more information on this model, see [17].

Theorem 2. Let G ∈ Gn,3. Then, a.a.s. ρ(G) = O(log n/n) = o(1).

Note that Theorem 2 can be easily generalized to random d-regular graphs for any
d ≥ 3. Here, of course, we want to have as sparse graph as possible so we focus on
d = 3. Let us also note that the result is tight, since (trivially) the diameter of any
3-regular graph is Ω(log n), the process takes at least Ω(log n) steps to finish and so
at least Ω(log n) vertices can be saved, regardless of the choice for the initial vertex at
which a fire breaks out. In other words, Theorem 2 implies that a.a.s. the surviving
rate of a random 3-regular graph is of order log n/n. Before we move to the proof of
this theorem, let us present a few important lemmas.

Lemma 3. Let K ≥ 3, d ≥ 3 be fixed integers and G ∈ Gn,d. The number of vertices
that belong to a cycle of length at most K is at most log log n a.a.s.

This lemma is well known (see, for example, [5]). Since the proof is short and simple,
we present it here for completeness.
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Proof. Let u ∈ V (G) and let Ni(u) denote the set of vertices at distance at most i from
u. Let fi denote the number of vertices in a balanced d-regular tree, that is,

fi = 1 + d

i−1∑
j=0

(d− 1)j = 1 +
d((d− 1)i − 1)

d− 2
= O((d− 1)i).

It is clear that (deterministically) ni = |Ni(u)| ≤ fi.
We will show that in the early stages of this process, the graphs grown from u’s tend

to be trees a.a.s. In other words, if we expose, step by step, the vertices at distance
1, 2, . . . , i from u, we have to avoid, at step j, edges that induce cycles. So, we wish not
to find edges between any two vertices at distance j from u or edges that join any two
vertices at distance j to a common neighbour at distance j + 1 from u. We shall refer
to edges of this form as ‘bad edges’. Note that the expected number of ‘bad edges’ at
step i+ 1 is O(n2

i /n) = O(f 2
i /n) = O((d− 1)2i/n). Therefore, the expected number of

‘bad edges’ found up to step i1 = dK/2e is equal to

i1−1∑
j=0

O
(
(d− 1)2j/n

)
= O

(
(d− 1)2i1/n

)
= O

(
1/n
)
.

Thus, the expected number of vertices that belong to a cycle of length at most K is
O(1) and the assertion follows from Markov’s inequality. �

In order to show Theorem 2, we need to investigate the expansion properties of
random d-regular graphs that follow from their eigenvalues. The adjacency matrix A =
A(G) of a given d-regular graph G with n vertices is an n×n real and symmetric matrix.
Thus, the matrix A has n real eigenvalues which we denote by λ1 ≥ λ2 ≥ · · · ≥ λn. It
is known that certain properties of a d-regular graph are reflected in its spectrum but,
since we focus on expansion properties, we are particularly interested in the following
quantity: λ = λ(G) = max(|λ2|, |λn|). In words, λ is the largest absolute value of
an eigenvalue other than λ1 = d (for more details, see the general survey [10] about
expanders, or [3], Chapter 9).

The value of λ for random d-regular graphs has been studied extensively. A major
result due to Friedman [15] is the following:

Lemma 4 ([15]). For every fixed ε > 0 and for G ∈ Gn,d, a.a.s.

λ(G) ≤ 2
√
d− 1 + ε.

The number of edges |E(S, T )| between two sets S and T in a random d-regular graph
on n vertices is expected to be close to d|S||T |/n. A small λ (or large spectral gap)
implies that this deviation is small. The following useful bound is essentially proved
in [1] (see also [3]):

Lemma 5 (Expander Mixing Lemma). Let G be a d-regular graph with n vertices and
set λ = λ(G). Then for all S, T ⊆ V∣∣∣∣|E(S, T )| − d|S||T |

n

∣∣∣∣ ≤ λ
√
|S||T | .
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(Note that S ∩ T does not have to be empty; in general, |E(S, T )| is defined to be
the number of edges between S \ T to T plus twice the number of edges that contain
only vertices of S ∩ T .)

For our purpose here it is better to apply a slightly stronger lower estimate for
|E(S, V \ S)|, namely,

|E(S, V \ S)| ≥ (d− λ)|S||V \ S|
n

(1)

for all S ⊆ V . This is proved in [2], see also [3].

Now, we are ready to prove Theorem 2.

Proof of Theorem 2. Consider the vertex set U consisting of vertices that do not belong
to a cycle of length at most 30. Since |U | ≥ n − log log n a.a.s. (by Lemma 3 applied
with K = 30), it is enough to show that a.a.s. sn(G, u) = O(log n) for all u ∈ U . Indeed,
it this is shown, then a.a.s.

ρ(G) =
1

n2

∑
v∈V

sn(G, v)

=
1

n2

∑
v∈U

sn(G, v) +
1

n2

∑
v∈V \U

sn(G, v)

=
n−O(log log n)

n2
×O(log n) +

O(log log n)

n2
×O(n)

= O(log n/n).

Let u ∈ U and let st denote the number of vertices burning at the end of time-step t.
Since u does not belong to a short cycle, it is clear that in order to minimize st during
a few first steps of the process, t ∈ {1, 2, . . . , 15}, the firefighter should use a greedy
strategy, that is, protect a vertex adjacent to the vertex on fire. If the greedy strategy
is used, then at the end of time-step t ∈ {1, 2, . . . , 15} there are at least ρt vertices that
catch fire in this time-step, where ρt’s satisfy the following recursion: ρ1 = 2 (during
the first round, the firefighter protects one vertex but 2 other vertices catch fire) and
ρt = 2ρt−1 − 1 for t ≥ 2 (there are 2ρt−1 vertices adjacent to the fire, one of them gets
protected). We get ρt = 2t−1 + 1 and, in particular, s15 ≥ ρ15 ≥ 16000.

Note that from (1) and Lemma 4 it follows that we may assume that

|E(S, V \ S)| ≥ (d− λ)|S||V \ S|
n

≥ 0.08|S|,

for all sets S of cardinality at most n/2. Therefore, if vertices from set S (|S| ≤ n/2)
are on fire, then at least 0.02|S| vertices are not on fire (including perhaps protected
vertices) but are adjacent to at least one vertex on fire. Thus, at least

0.02s15 − 16 ≥ 0.01s15 + 160− 16 ≥ 0.01s15

new vertices are going to catch fire at the next round and so s16 ≥ 1.01s15. One can
use this argument (inductively) to show that st+1 ≥ 1.01st, provided that st ≤ n/2.



6 PAWE L PRA LAT

Indeed, for any t ≥ 15 with st ≤ n/2, we have

st+1 ≥ 1.02st − (t+ 1) ≥ 1.01st + 0.01 · 16000 · 1.01t−15 − (t+ 1) ≥ 1.01st.

This implies that at least n/2 vertices are on fire at time t0 ≤ log1.01 n.
From this point on (that is, for t > t0), it is easier to focus on rt = n−st, the number

of vertices that are not burning at time t. Using (1) and Lemma 4 again, we get that
at least 0.02rt non-burning vertices are adjacent to some vertex on fire at time t. Thus,
we get that rt+1 = 0.99rt provided that rt ≥ 100(t+ 1). Indeed, it follows that

rt+1 ≤ 0.98rt + (t+ 1) ≤ 0.99rt.

This implies that at least n − O(log n) vertices are on fire at time T ≤ log1.01 n +
log1/0.99 n = O(log n), and the proof is finished. �

Now, consider a graph G with the maximum degree at most 3 and average degree
at most 3 − ε, for some ε > 0. This means that a positive fraction of all vertices (in
fact, at least εn/3 vertices) must have degree at most two. If the fire breaks out at
such a vertex (which happens with probability at least ε/3), then one can use a greedy
algorithm to protect an arbitrary vertex adjacent to the fire at any step of the process.
By doing this, at most one new vertex catches fire at any time-step of the process and so
one can save this way at least 1/3 fraction of the vertices. (Note that the constant 1/3
is best possible, as ρ(K3) = 1/3. Moreover, this is not to say that the best protecting
schedule is easy to determine—see [12] for more on that. Here, we just use a suboptimal
strategy of protecting any vertex adjacent to the fire, which is enough for our purpose.)
It follows that ρ(G) ≥ ε/9 > 0. Therefore, in order to construct a sparser graph that
burns fast, perhaps surprisingly, we need to introduce vertices of higher degree.

We propose the following random graph which proves that the constant 4
3

cannot be

replaced by 15
11

. Since the proof of this fact is similar to the one we used to show the
result for random 3-regular graphs, we omit details, giving only a sketch of the proof.
Fix K ∈ N that is congruent to 3 modulo 5, and n ∈ N. Let us start with n disjoint
paths of length K on the vertex set X, and the set Y consisting of 2n(K+2)/5 isolated
vertices (recall that K + 2 is divisible by 5). Put random edges between X and Y
such that every vertex in X has degree 4, and every vertex in Y has degree 5. It may
happen that multiple edges are created but we restrict our probability space to simple
graphs. It can be shown that we generate a simple graph with probability asymptotic
to some constant c > 0, so the pairing model can be used again to study an asymptotic
behaviour of this random graph. No edge between vertices in Y is added, so Y forms
an independent set. Finally, subdivide each edge (both in the random part as well as
in the n paths we started with) to get a graph G(K,n). The random graph G(K,n) is
defined for any value of K (congruent to 3 modulo 5) but for our purpose we take, say,
K = (1 + o(1)) log log log n so that it is tending to infinity together with n but not so
fast.

The properties of G(K,n) are investigated next. Let us start with the average degree.
We have (1 + o(1))Kn vertices of degree 4 and (2

5
+ o(1))Kn vertices of degree 5. Thus,
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the number of edges in the graph G before subdividing edges is

1

2

∑
v∈V

degG(v) = (1 + o(1))
4 ·Kn+ 5 · 2

5
Kn

2
= (1 + o(1))3Kn,

so this is also the number of vertices of degree 2 after subdividing. Finally, the average
degree of G(K,n) can be estimated as follows:

Av(G(K,n)) =

∑
v∈V degG(K,n)(v)

|V (G)|

= (1 + o(1))
4 ·Kn+ 5 · 2

5
Kn+ 2 · 3Kn

Kn+ 2
5
Kn+ 3Kn

= (1 + o(1))
30

11
.

(In fact, we could introduce o(Kn) additional isolated vertices to make the average
degree at most 30

11
and this, of course, would not affect an asymptotic behaviour of the

surviving rate of G(K,n).)

Now, let us investigate how fast this graph is burning. One can show the following
result.

Theorem 6. Let K = (1 + o(1)) log log log n and K ≡ 3 (mod 5). Then, a.a.s.

ρ(G(K,n)) = o(1).

As we already mentioned, the argument that can be used to prove this theorem is
similar to the one we used to prove this property for random 3-regular graphs. Un-
fortunately, we cannot use the spectral argument but the pairing model may be used
to show the following property that we need. Suppose that some vertices of degree 5
are adjacent to two vertices on the same path (before edges are subdivided). If this
happens, we call the path bad ; otherwise the path is good. One can show that a.a.s.
o(n) paths are bad; in other words, a.a.s. almost all paths are good. Since our goal is
to show the result that holds a.a.s., we may assume that the graph has this property.

Now, suppose that the fire breaks out on a vertex v ∈ V = V (G(K,n)). The
firefighter must try to avoid hitting vertices of degree 5; otherwise the same argument
as before can be used to show that the fire will start spreading exponentially fast and
there is no hope to stop this process. It follows that sn(G, v) = o(Kn) if deg(v) = 5.
If v is on (or adjacent to) a bad path, then there is a chance to save a large fraction of
the graph. However, since almost all paths are good, this does not affect an asymptotic
behaviour of the surviving rate. Suppose then that v is on (or adjacent to) a good path.
If deg(v) = 4, the firefighter must start with protecting two vertices corresponding to
the random part, but he has to give up after the next two rounds. The fire reaches a
vertex of degree 5, and sn(G, v) = o(Kn) again. (See Figure 1.)

If deg(v) = 2, the firefighter can keep pushing fire along the path (see Figure 2) but,
since at the end of the path there is a vertex adjacent to 3 random edges, it is impossible
to avoid vertices of degree 5. Once the fire reaches vertex of degree 5, it spreads quickly
and the result holds.
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Figure 1. The fire starts on a degree 4 vertex (circles - protected ver-
tices, squares - fire).

Figure 2. The fire starts on a degree 2 vertex (circles - protected ver-
tices, squares - fire).

3. Sparse graphs can be well protected

In this section we show that all graphs with average degree smaller than 30
11

have
surviving rates bounded away from zero. In order to avoid some technical difficulties,
we would like to focus on a special class of graphs A: G ∈ A if and only if the minimum
degree of G is at least two and no edge has both endpoints of degree two. The following
lemma implies that a sparse graph G has a bounded surviving rate or there exists
another sparse graph G′ ∈ A with a small surviving rate, comparable to the one of G.

Lemma 7. Suppose that graph G has n ≥ 2 vertices and m ≤ (15
11
−ε)n edges, for some

0 < ε < 1
2
. Then,

(a) ρ(G) ≥ ε
40

, or

(b) there exists a graph G′ ∈ A on N vertices, M ≤ (15
11
− ε

2
)N edges, and ρ(G′) ≤

ρ(G)
0.9

.

Proof. We can assume that there are at most ε
20
n vertices of degree at most one; oth-

erwise ρ(G) ≥ ε
20
· 1
2

= ε
40

(with probability at least ε
20

the fire starts at such a vertex,
and at least half of the vertices can be protected). Similarly, we can assume that at
most ε

20
n edges have both endpoints of degree two; otherwise again ρ(G) ≥ ε

40
(if the

fire breaks out on such an endpoint, then we can protect one neighbour forcing the fire
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to move along the edge; we finish the process in the next round saving at least half of
the vertices, unless G = K3 for which the result trivially holds.).

Now, form G′ from G by removing all vertices of degree at most one and contracting
each edge with both endpoints of degree two into a single vertex. The number of vertices
in G′, N , satisfies N ≥ (1 − ε

10
)n. The number of edges in G′, M , can be bounded as

follows

M ≤ m ≤
(

15

11
− ε
)
n ≤

15
11
− ε

1− ε
10

N ≤
(15

11
− ε
)(

1 +
ε

5

)
N ≤

(15

11
− ε

2

)
N. (2)

Finally,

ρ(G′) =
1

N2

∑
v∈V (G′)

sn(G′, v) ≤ 1

(1− ε
10

)2n2

∑
v∈V (G′)

sn(G, v) ≤ ρ(G)

0.9
, (3)

since ε < 1
2
. �

It follows from Lemma 7 that, without loss of generality, we can focus on graphs from
the class A. The next lemma has the same purpose (that is, to restrict our attention
to even smaller subclass B) and has a very similar proof. Before we define the class we
would like to work with, let us introduce the following definition. The kernel, K[G],
of a graph G ∈ A is the graph obtained from G by replacing each path (a, b, c) where
deg(b) = 2 by what we call a long edge. (Note that, since G is from A, there is no
edge with two endpoints of degree two and the kernel is well defined.) Note that the
minimum degree of K[G] is 3. We refer to all other edges of K[G] as short. Finally, we
remove all multiple edges, if necessary. See an example presented on Figure 3.

(a) graph G (b) kernel graph K[G] (long edges are thick)

Figure 3. Construction of kernels.

Now, we are ready to define the class B: G ∈ B if and only if G ∈ A and K[G] has
the following properties:

(P1) there is no cycle consisting of long edges only, where each vertex has degree
precisely 4 and is incident to at least 3 long edges,

(P2) there is no path such that all internal vertices have degree 3, and both the first
and the last edge is long,

(P3) there is no cycle consisting of vertices of degree 3, where at least one vertex is
adjacent to a long edge (not necessarily on the cycle).
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(See Figure 4 for all forbidden configurations.)

(P1) (P2) (P3)

Figure 4. Forbidden configurations for class B.

The next lemma implies that a sparse graph G ∈ A has bounded surviving rate or
there exists another sparse graph G′ ∈ B.

Lemma 8. Suppose that graph G ∈ A has n ≥ 2 vertices and m ≤ (15
11
− ε

2
)n edges, for

some 0 < ε < 1
2
. Then,

(a) ρ(G) ≥ ε
50

, or

(b) there exists a graph G′ ∈ B on N vertices and M ≤ (15
11
− ε

4
)N edges.

Proof. The proof is very similar to that of Lemma 7. There are at most ε
20
n long edges in

K[G] associated with forbidden configurations (P1)-(P3); otherwise ρ(G) ≥ ε
20
· 2
5

= ε
50

(note that if the fire breaks out on a long edge in the configuration (P1), then we are
guaranteed to save only 2

5
of the graph).

This time, we form G′ from G by replacing all long edges in forbidden configurations
by short ones (that is, contracting each path (a, b, c) in G with deg(b) = 2 by a single
edge). The number of vertices N in G′ satisfies N ≥ (1 − ε

20
)n. The number of edges

M in G′ can be bounded as follows

M ≤ m ≤
(

15

11
− ε

2

)
n ≤

15
11
− ε

2

1− ε
20

N ≤
(15

11
− ε

2

)(
1 +

ε

10

)
N ≤

(15

11
− ε

4

)
N. (4)

The assertion follows. �

Combining Lemma 7 and Lemma 8 we get that a sparse graph G either has the
surviving rate bounded away from zero or there exists another sparse graph G′ ∈ B
with average degree smaller than 30

11
. We will show that the latter cannot happen (see

Theorem 9), which proves that

ρ(G) ≥ min
{ ε

40
, 0.9ρ(G′)

}
≥ 0.9

ε

50
>

ε

60
,

and the main result, Theorem 1, holds.
As we already mentioned, the constant 1/60 can be improved slightly. Here, we

mention briefly how one can do it, but still there are a lot of points in the existing
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argument that could be improved so one can push it further with even more careful
approach. If ρ(G) ≥ cε for some c > 0, then inequality (2) can be improved as follows:

M

N
≤

15
11
− ε

1− 2cε
=

15

11
− ε

(
1− 30

11
c

)
+O(ε2),

and (3) can be replaced by ρ(G′) = (1 + O(ε2))ρ(G). With this in hand, (4) can be
done more carefully to get

M

N
≤

11
15
− ε

(
1− 30

11
c
)

+O(ε2)

1− 5
2
cε+O(ε2)

=
15

11
− ε

(
1− 135

22
c

)
+O(ε2).

This implies that the constant 1/60 ≈ 0.0167 could be easily replaced by a constant
that is arbitrarily close (but smaller than) 22

135
≈ 0.163 (almost 10 times larger).

Theorem 9. Every graph G ∈ B on n ≥ 2 vertices has m > 15
11
n edges.

Proof. Take any graph G = (V,E) ∈ B, V = {v1, v2, . . . , vn}. We consider the kernel
K[G] and use the model similar to the pairing model, which was used in the previous
section. (However, unlike in the case of random regular graphs there is no randomness
involved in this case, but rather some degeneracy/discharging-type argument.) Con-
sider 2m points partitioned into n labeled buckets v1, v2, . . . , vn; bucket with label vi
consists of deg(vi) points. A pairing of these points is a perfect matching into m pairs.
Given a graph G, we may construct a pairing P (G), as follows: the vertices are the
buckets v1, v2, . . . , vn, and a pair {x, y} in P corresponds to an edge vivj in G(P ) if x
and y are contained in the buckets vi and vj, respectively.

We construct the pairing P (G) introducing edges of G one by one (however, some-
times it would be more convenient to introduce a few edges at the time). At time t = 0
we have no pair of points matched. At every time-step t, we would like to control the
following values:

Nt = the number of saturated points (that is, already paired);

Dt =
∑
i∈[n]

the number of saturated points in the bucket with label vi
deg(vi)

.

For a given t, let n = Nt − Nt−1 and d = Dt − Dt−1. The weight of the operation
performed at time t is n/d. Clearly, at the beginning of the process D0 = N0 = 0,
whereas at the end of the process, time T , we have NT = 2|E|, DT = |V |; the average
degree in G is then NT/DT .

Let us partition the vertex set V into the following subsets:

(i) V3 : vertices of degree 3;
(ii) V ≥34 : vertices of degree 4 that are adjacent to at least 3 long edges;
(iii) V ≤24 : vertices of degree 4 that are adjacent to at most 2 long edges;
(iv) V≥5 : vertices of degree at least 5.

Since only a small number of long edges can be adjacent to vertices from V3 (see
properties (P2) and (P3)), in order to minimize the average degree, a large number of
vertices of degree 4 adjacent to long edges would have to be introduced. However, it is



12 PAWE L PRA LAT

also not possible (see the property (P1)) and so no graph from the family B is sparse.
We will make this observation rigorous soon.

In order to warm up and to explain the strategy that will be used, we assume first
that V3 = V ≤24 = ∅ and that all edges are long. Let x = |V ≥34 |. The assertion clearly
holds if x = 0. The notation below ([ 13 ] and [ 12 ]) might be misleading (at this
point) but we prepare the setting for a future argument.

[ 13 ] We start with adding x13 long edges between vertices in V ≥34 . It follows from
(P1) that x13 ≤ x − 1 (the set V ≥34 cannot induce a long cycle). Adding one
edge to P increases Nt by n13 = 4 (4 points since an edge is long), and Dt by
d13 = 2

2
+ 2

4
= 3

2
(two points in a bucket of degree two, and two points in a

bucket of degree 4). The weight of each operation is 8
3
≈ 2.667.

[ 12 ] Add x12 edges with at least one endpoint in V≥5; this time, n12 = 4 and
d12 ≤ 2

2
+ 1

4
+ 1

5
= 29

20
(two points in bucket of degree two, one point in a bucket

of degree at least 4, and one point in a bucket of degree at least 5). The weight
is at least 80

29
≈ 2.759.

Thus, the average degree in G can be bounded as follows

Av(G) ≥ x13n13 + x12n12

x13d13 + x12d12
=

4x13 + 4x12
3
2
x13 + 29

20
x12

.

As we already mentioned, x13 ≤ x−1, so there are a few edges between vertices in V ≥34 .
This implies that there are a lot of edges between V ≥34 and V≥5. In fact, by a simple
counting argument we get that 2x13 + x12 ≥ 4x. It is not difficult to show that Av(G)
is maximized for x13 = x− 1 and x12 = 4x− 2x13, that is, when V ≥34 induces a tree and
all other edges are between V ≥34 and vertices of degree 5. (Note that the random graph
we constructed in Section 2 to show that the result is sharp has exactly this form.) We
get,

Av(G) ≥ 4(x− 1) + 4(2x+ 2)

3(x− 1)/2 + 29(2x+ 2)/20
=

12x+ 4

22x/5 + 7/5
> 30/11,

and the assertion holds.

In general we have many more other operations to consider, but the idea is exactly
the same. We start with adding a long edge ab (deg(a) ≥ 4, deg(b) = 3) together with
edges bc and bd that are adjacent to b (note that those edges are short by property
(P2)). If there are other long edges attached to c or d that are adjacent to other
vertices of degree at least 4, then we add them as well (note that if this is the case,
then deg(c) ≥ 4 and deg(d) ≥ 4 by (P2)). There are four cases to consider that are
illustrated in Figure 5. We perform xi operations of type [i].

[ 1 ] Add 3 long and two short edges in one round; n1 ≥ 16, d1 ≤ 6
2

+ 3
3

+ 7
4
; the

weight is at least 64
23
> 80

29
.

[ 2 ] Add two long and two short edges; n2 ≥ 12, d2 ≤ 4
2

+ 4
3

+ 4
4
; the weight is at

least 36
13
> 80

29
.

[ 3 ] Add one long edge and at least one of c, d has degree at least 4; n3 ≥ 8,
d3 ≤ 2

2
+ 4

3
+ 2

4
; the weight is at least 48

17
> 80

29
.
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[ 1 ] [ 2 ] [ 3 ] [ 4 ]

Figure 5. First 4 types of rounds.

[ 4 ] Add one long edge and both c and d has degree 3. In this situation, we
add all edges adjacent to c and d as well (note that those edges are short by
(P2)); n4 ≥ 14, d3 ≤ 2

2
+ 11

3
+ 1

4
, the weight is at least 168

59
> 80

29
(the extreme

configuration is presented in Figure 5).

In the next couple of rounds we add a long edge ab (this time deg(a) = deg(b) = 3)
together with all (short by (P2)) edges adjacent to a and b. (Note that we must have
4 distinct short edges by (P3).) As before, we add one long edge (if such an edge
exists) incident to each neighbour of a and b. Such an edge must have both endpoints
of degree at least 4 by (P2) and the fact that we already introduced all long edges
between vertices of degree 3 and 4. All five, almost identical, cases are illustrated in
Figure 6.

Figure 6. Next 5 types of rounds: [ 5 ]-[ 9 ].

[ 5 ] Add 5 long and 4 short edges; n5 ≥ 28, d5 ≤ 10
2

+ 6
3

+ 12
4

; the weight is at least
14
5
> 80

29
.
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[ 6 ] Add 4 long and 4 short edges; n6 ≥ 24, d6 ≤ 8
2

+ 7
3

+ 9
4
, the weight is at least

288
103

> 80
29

.

[ 7 ] Add 3 long and 4 short edges; n7 ≥ 20, d7 ≤ 6
2

+ 8
3

+ 6
4
, the weight is at least

120
43
> 80

29
.

[ 8 ] Add two long and 4 short edges; n8 ≥ 16, d8 ≤ 4
2

+ 9
3

+ 3
4
, the weight is at least

64
23
> 80

29
.

[ 9 ] Add one long and 4 short edges; n9 ≥ 12, d9 ≤ 2
2

+ 10
3

, the weight is at least
36
13
> 80

29
.

Now, we add a long edge ab (a ∈ V ≤24 ). Since all long edges incident to vertices of
degree 3 are already introduced, deg(b) ≥ 4. Since a ∈ V ≤24 is incident to at least two
short edges, there must be a short edge ac, which was not yet introduced (that is why
we kept adding additional long edges if it was possible). We add ac together with an
additional long edge cd if such an edge exists (note that in such a case, both vertices
must have degree at least 4).

[ 10 ] Add two long and one short edge; n10 ≥ 10, d10 ≤ 4
2

+ 6
4
; the weight is at least

20
7
> 80

29
.

[ 11 ] Add one long and one short edge; n11 ≥ 6, d11 ≤ 2
2

+ 1
3

+ 3
4
; the weight is at

least 72
25
> 80

29
.

Finally,

[ 12 ] Add long edges with at least one endpoint is in V5; the weight is at least 80
29

(we discussed this before).
[ 13 ] Add long edges between vertices in V ≥34 ; the weight is 8

3
(again, we discussed

this before).
[ 14 ] Add all short edges; n14 = 2, d14 = 2/3, the weight is 3.

The average degree in G is

Av(G) ≥
∑14

i=1 xini∑14
i=1 xidi

.

The smallest possible weight of 8
3

is the one corresponding to operation [13] but, as we
discussed before, we cannot have many operations of this type by (P1). In fact, we get
that x13 ≤ x − 1, where x = |V ≥34 |. Next in the line is the weight of 80

29
corresponding

to [12]. Since

3x1 + 2x2 + x3 + x4 + 4x5 + 3x6 + 2x7 + x8 + 2x10 + x11 + x12 + 2x13 ≥ 4x,

it is not hard to see that the previous construction minimizes the average degree and
the assertion follows. �

4. More firefighters

Let k ∈ N and suppose that in each subsequent time unit, firefighters protect k
vertices which are not yet on fire. For this natural extension (the k = 1 case corresponds
to the original problem studied in this paper), one can define the surviving rate ρk(G)
analogously (ρ1(G) = ρ(G) and clearly ρ`(G) ≥ ρk(G) whenever ` > k).
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It turns out (perhaps surprisingly) that k ≥ 2 is much easier to analyze comparing
to the k = 1 case. Let τk = k + 2 − 1

k+2
. In [16], it has been shown recently that for

any ε > 0 and k ≥ 2, every graph G on n vertices with at most (τk − ε)n edges is not
flammable; that is, ρk(G) > 2ε

5τk
> 0. Moreover, a construction of a family of flammable

random graphs is proposed to show that the constant τk cannot be improved.
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