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Abstract. In the game of cops and robber, the cops try to capture a robber moving
on the vertices of the graph. The minimum number of cops required to win on a given
graph G is called the cop number of G. In this paper, we consider the variant of the
game in which both players play on edges instead of vertices, yielding the edge cop
number. We relate the new graph parameter to the classic one, investigate Meyniel
extremal families, and characterize edge cop-win graphs. We also play the game on
random graphs and planar graphs.

1. Introduction

The game of Cops and Robbers, introduced independently by Nowakowski and Win-
kler [23] and Quilliot [28] thirty years ago, is played on a fixed graph G. We will always
assume that G is undirected, simple, and finite. There are two players, a set of k cops,
where k ≥ 1 is a fixed integer, and the robber. The cops begin the game by occupying
any set of k vertices (in fact, for a connected G, their initial position does not matter).
The robber then chooses a vertex, and the cops and robber move in alternate rounds.
The players use edges to move from vertex to vertex. More than one cop is allowed to
occupy a vertex, and the players may remain on their current positions. The players
know each others current locations. The cops win and the game ends if at least one of
the cops eventually occupies the same vertex as the robber; otherwise, that is, if the
robber can avoid this indefinitely, he wins. As placing a cop on each vertex guarantees
that the cops win, we may define the cop number, written c(G), which is the minimum
number of cops needed to win on G. The cop number was introduced by Aigner and
Fromme [1] who proved (among other things) that if G is connected and planar, then
c(G) ≤ 3. For more results on vertex pursuit games such as Cops and Robbers, the
reader is directed to the surveys on the subject [3, 14, 17] and recent monograph [10].

Suppose now that both players are slightly bored and, in order to make the game
more interesting, they have decided to play on edges instead of vertices. In other words,
the players start the game on edges and use vertices to move from edges to edges. The
other rules of the game remain unchanged. We define the edge cop number, c̄(G), to
be the counterpart of the cop number for the classic game. It is clear that playing the
new game on a graph G is equivalent to playing the classic game on L(G), the line
graph of G; that is, c̄(G) = c(L(G)). However, it seems that it is not beneficial to look
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at the problem this way, especially if one is interested in discovering properties of the
new graph parameter and trying to relate it to some other parameters, including the
classic cop number. For example, as we already mentioned c(G) ≤ 3 for any connected,
planar graph G but, since L(G) is usually not planar, we cannot say anything about
c̄(G). However, by playing on edges of G and using the planarity of this graph one can
show that the bound of 3 still holds. The only proof in this paper that uses the fact
that c̄(G) = c(L(G)) is the proof of Lemma 3.3

In Section 2 we relate the edge cop number to the classic one. We characterize
graphs with the edge cop number equal to one in Section 3. In Section 4, we investigate
Meyniel extremal families. In particular, the edge cop number of incidence graphs of
the projective plane is studied. Random graphs are considered in Section 5 and planar
graphs in Section 6. We conclude the paper with some open problems and future
directions that can be found in Section 7.

2. Relation to the cop number

In this section, we relate the edge cop number c̄(G) to the classic cop number c(G).

Theorem 2.1. Let G be any connected graph. Then⌈
c(G)

2

⌉
≤ c̄(G) ≤ c(G) + 1.

Before we move to the proof of this theorem, let us mention that this result is sharp.
For the upper bound, note that for n ≥ 4, c̄(Kn) = 2 whereas c(Kn) = 1. (Charac-
terization of graphs with c̄(G) = c(G) + 1 is left as an open problem—see Section 7
for more details.) For the lower bound one can check that the Petersen graph (or the
graph presented in Figure 1) has the classic and the edge cop number of 3 and 2, re-
spectively, yielding d3

2
e = 2. (Having said that, we note that a small improvement may

be possible and perhaps d(c(G) + 1)/2e ≤ c̄(G)—see Section 7 for more details.) More
importantly, we will show (Theorem 5.1) that asymptotically almost surely the ratio
c̄(G(n, p))/c(G(n, p)) is equal to 1/2+o(1) for dense random graphs. This, in particular,
implies that for almost all graphs the classic cop number is (roughly) twice as much as
the edge one.

Figure 1. A plane representation of the dodecahedron.
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Proof of Theorem 2.1. For both inequalities that are to be proved, we are going to
relate the two corresponding games: the edge variant of the game and the classic one.
Hence, a winning strategy for one game can be translated to a winning strategy of
the other. At any point of the game on edges and for every player occupying an edge
e = uv (regardless whether it is a cop or the robber), we call one of the endpoints (say,
u) a head of this player and the other endpoint (say, v) is called a tail. When a player
makes a move, he can move from edge to edge either through a head or a tail, making
sure the distances travelled by heads and tails are at most 1. For example, when a
player moves from e = uv to e′ = vw, vertex v that used to be a tail becomes a head
and w is a tail.

Let us start with a proof of c̄(G) ≤ c(G) + 1. We play the edge variant of the game
with c + 1 cops, having in mind that c = c(G) cops can win the classic variant. The
players start the game as usual, the team of c+ 1 cops go first to some edges and then
the robber goes to some edge. We distinguish two phases in this game. At the beginning
of the first phase, we select any c cops that will be actively playing during this phase;
the remaining cop is passive, getting ready for the second phase. By looking at heads of
all active players, we can mimic the classic game on vertices so that c heads of cops are
chasing the head of the robber. (Note that it might happen that a head of some player
needs to move to a tail of this player. But this causes no problem, since we may simply
swap them.) Since G is connected, there is a winning strategy which guarantees that
at some point a head of some cop catches the head of the robber, and the first phase
ends. During the second phase, the cop that caught the head of the robber will have a
special task of chasing the robber till the end of the game so that their heads are always
matched. The remaining c cops (including the one that was passive in the first phase),
mimicking the classic game, follow their winning strategy which guarantees that a tail
of some cop catches the tail of the robber. The robber is caught in the next round and
the upper bound holds.

Now, we move to a proof of c(G) ≤ 2c̄(G). We play the classic variant of the game
with 2c cops, having in mind that c = c̄(G) cops can win the edge variant. The cops
start the game by occupying edges u1v1, u2v2, . . . , ucvc, so we send 2c cops to occupy
all endpoints of these edges. (It might happen that more than one cop is sent to one
vertex.) The robber responds by occupying a vertex v. Let u be any neighbour of v
(recall that G is connected so v has at least one neighbour). To couple the two games,
we may assume that the robber starts the edge variant by occupying the edge uv. From
that point on, we couple the two games as before. Since c cops have a strategy to win
the edge variant of the game, one of 2c cops catch the robber in the classic game. The
lower bound holds and the proof is finished. �

3. Characterization of edge cop-win graphs

In this section, we investigate the special case when one cop can win the game.
If c(G) = 1 (or c̄(G) = 1), we say G is cop-win (or edge cop-win, respectively).
Nowakowski and Winkler [23], and independently Quilliot [28], considered the game
with one cop only. As we already mentioned, the introduction of the cop number came
in [1].
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The structure of cop-win graphs has been relatively well-understood. In [23, 28, 29]
a kind of ordering of the vertex set—now called a cop-win ordering—was introduced
which completely characterizes such graphs. If u is a vertex, then the closed neighbour
set of u, written N [u], consists of u along with the neighbours of u. A vertex u is a
corner if there is some vertex v, v 6= u, such that N [u] ⊆ N [v]. A graph is dismantlable
if some sequence of deleting corners results in the graph with a single vertex. For
example, each tree is dismantlable, and more generally, so are chordal graphs (that is,
graphs with no induced cycles of length more than three). To prove the latter fact,
it is enough to note that a chordal graph contains a vertex (called simplicial) whose
neighbour set is a clique.

The following theorem provides a characterization of cop-win graphs.

Theorem 3.1. [23, 28, 29]

(i) If u is a corner of a graph G, then G is cop-win if and only if G− u is cop-win.
(ii) A graph is cop-win if and only if it is dismantlable.

From Theorem 3.1, cop-win graphs have a recursive structure, made explicit in the
following sense. A permutation v1, v2, . . . , vn of the vertices of G is a cop-win ordering
if there exist vertices w1, w2, . . . , wn such that, for all i ∈ {1, 2, . . . , n}, N [vi] ⊆ N [wi] in
V (G) \ {vj : j < i} and vi 6= wi. This result implies that the family of cop-win graphs
is quite rich. On the other hand, it was shown by Bonato, Kemkes, and the third
author that almost all cop-win graphs contain a universal vertex, that is, a vertex that
is joined to all other vertices [9]. (See also [24] where this result was generalized and it
was shown that almost all k-cop-win graphs contain a dominating set of cardinality k.)

In this section, we characterize edge cop-win graphs. The following theorem is the
main result of this section.

Theorem 3.2. A graph G is edge cop-win if and only if the following three properties
hold:

(i) G is connected,
(ii) G is chordal,

(iii) G is K4-free.

We start with a definition of the following useful process. Let G2 be a graph consisting
of two vertices v1, v2 and a single edge v1v2. For a given integer t ≥ 3, we construct Gt

from Gt−1 by adding one more vertex vt and performing a vertex step or an edge step.
When a vertex step is performed, any vertex vi ∈ V (Gt−1) is selected and one edge vivt
is added. When an edge step is performed, any edge vivj ∈ E(Gt−1) is selected and two
edges vivt and vjvt are added. Note that a graph Gt consists of t vertices. We say that
a graph G on n vertices is constructible if it can be generated during this process; that
is, there exists a process generating a sequence of graphs (Gt : t ≥ 2) with G = Gn.

Lemma 3.3. Graph G is edge cop-win if and only if G is constructible.

Proof. Consider any process (Gt : t ≥ 2). We will show first that for any t ≥ 3 we
have c̄(Gt−1) = 1 if and only if c̄(Gt) = 1. In order to prove the claim, we simply use
Theorem 3.1 and use the fact that playing the game on edges of G is equivalent to
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playing the classic game on the line graph of G. Suppose first that in order to get Gt

from Gt−1 a vertex step was performed. Let e = vivt be the edge added at this step
and e′ = vjvi be any other edge incident to e. Since N [e] ⊆ N [e′] in the line graph
L(G), e is a corner and the claim holds by Theorem 3.1(i). Suppose then that Gt was
created after an edge step was performed; an edge e = vivj was selected, and two edges
e′ = vivt and e′′ = vjvt were added. Since N [e′] ⊆ N [e], e′ is a corner in L(G) (e′′ is
also a corner) and the claims holds as well.

Using the claim, we get immediately one direction of the statement: if G is con-
structible, then c̄(G) = 1. Hence, it remains to prove the converse. We prove it by
induction on number of vertices. For the base step note than the only connected graph
on 2 vertices is both edge cop-win and constructible. Let n ∈ N, n ≥ 3, and G be any
graph on n vertices such that c̄(G) = 1. Assuming that every edge cop-win graph on
n − 1 vertices is constructible we need to show that G is constructible. Consider the
game played on G. The cop has a strategy to catch the robber but we assume that the
robber tries to play as long as possible. What happens when the game is about to end?
The robber occupies an edge uv and the cop occupies an edge incident to uv, say, vw.
No matter what the robber does in the next round, he will be caught by the cop and
the game ends. The only two possible scenarios are: u has only one neighbour, vertex
v, or u has two neighbours, v and w. (In every other scenario, the robber could survive
for another round.) No matter which situation actually occurs, G can be constructed
from G− u by performing a vertex step or an edge step, respectively. Since c̄(G) = 1,
we can use the claim one more time to get that c̄(G − u) = 1. From the assumption
it follows that G− u is constructible, hence G is constructible as well and the proof is
finished. �

Theorem 3.2 follows immediately from Lemma 3.3 and the following lemma.

Lemma 3.4. A graph G is constructible if and only if the following three properties
hold:

(i) G is connected,
(ii) G is chordal,
(iii) G is K4-free.

Proof. It is an easy observation that a constructible graph G satisfies the three prop-
erties. Suppose then that a graph G satisfies properties (i)-(iii). Since G is chordal
(property (ii)), there exists a simplicial vertex v ∈ V (G); that is, N [v] induces a clique.
Since G is K4-free (property (iii)), N [v] is isomorphic to K2 or K3. It follows that G
can be constructed from G − v by performing a vertex step or an edge step, respec-
tively. Moreover, since v is simplicial, G − v is chordal and so we can keep repeating
the argument to deconstruct G (G is connected by property (i)). The result holds. �

Since any connected, chordal graph is cop-win we get immediately the following
corollary.

Corollary 3.5. If G is edge cop-win, then G is cop-win.
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Moreover, every constructible graph is planar and sparse (every constructible graph
Gn on n vertices has at most 2n − 1 edges) and so every edge cop-win graph has the
two properties.

4. Meyniel’s conjecture and projective planes

The most important open problem in this area is Meyniel’s conjecture (communicated
by Frankl [13]). It states that c(n) = O(

√
n), where c(n) is the maximum of c(G)

over all n-vertex connected graphs. If true, the estimate is best possible as one can
construct a bipartite graph based on the finite projective plane with the cop number
of order at least

√
n. (See below for more details.) Up until recently, the best known

upper bound of O(n log log n/ log n) was given in [13]. It took 20 years to show that
c(n) = O(n/ log n) as proved in [12]. Today we know that the cop number is at most

n2−(1+o(1))
√

log2 n (which is still n1−o(1)) for any connected graph on n vertices (the
result obtained independently by Lu and Peng [21], Scott and Sudakov [30], and Frieze,
Krivelevich and Loh [15]).

It is believed that the conjecture is true. However, if one looks for counterexamples
for Meyniel’s conjecture it is natural to study first the cop number of random graphs.
It was recently shown that it is impossible and, in fact, Meyniel’s conjecture holds
asymptotically almost surely for binomial random graphs [27] as well as random d-
regular graphs [26]. (See the next section for more.) These results for random graph
models support Meyniel’s conjecture although there is currently a huge gap in the
deterministic bounds: it is still not known whether there exists ε > 0 such that the cop
number of connected graphs of order n is O(n1−ε).

In this paper, we study the edge cop number c̄(G). It follows from Theorem 2.1
that c(G)/2 ≤ c̄(G) ≤ 2c(G) for every connected graph G. As a result, Meyniel’s
conjecture for the new graph parameter c̄(G) is equivalent to the classic conjecture for
c(G). However, even if we believe the conjecture is true, the question remains how
close the cop numbers can approach

√
n from below. We address this question in this

section.
Following terminology that was introduced by Baird and Bonato in [4], we call an

infinite family of graphs (Gn : n ≥ 1) Meyniel extremal (or d-Meyniel extremal) if

there exists a universal constant d such that for all n we have c(Gn) ≥ d
√
|V (Gn)|. As

pointed out in [4], incidence graphs are very useful in constructing graphs with large
cop numbers (see [8] for more). An incidence structure S consists of a set P of points,
and a set L of lines along with an incidence relation consisting of ordered pairs of points
and lines. Projective planes are some of the most well-studied examples of incidence
structures. A projective plane of order q, PG(2, q), consists of a set P of points and a
set L of lines satisfying the following:

• There is exactly one line incident with every pair of distinct points;
• There is exactly one point incident with every pair of distinct lines;
• Every line consists of q + 1 points and every point lies on q + 1 lines;
• |P | = |L| = q2 + q + 1.
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Given an incidence structure S, we define its incidence graph G(S) to be the bipartite
graph whose vertices consist of the points (one partite set), and lines (the second partite
set), with a point joined to a line if it is incident with it in S.

A girth of a graph G is defined as the length of a shortest cycle. As proved in [1] by
Aigner and Fromme, if the girth of G is at least 5, then c(G) ≥ δ(G), where δ(G) is
the minimum degree of G. It is known (see, for example, [16]) that for every q that is a
prime power the projective plane P := PG(2, q) exists. Let G(P ) be the corresponding
incidence graph. It immediately follows from the above properties of PG(2, q) that
G(P ) is connected, has girth 6, is (q + 1)-regular, and has 2(q2 + q + 1)-many vertices.
Hence,

c(G(P )) ≥ q + 1 =

√
2(q2 + 2q + 1)

2
≥
√
|V (G(P ))|

2
,

and so this family is (1/
√

2)-Meyniel extremal. (In fact, c(G(P )) = q + 1 as shown by
the third author in [25].) It is not known if this family yields the largest constant d
(since Meyniel’s conjecture is still open!), but no better construction has been found.

Let us now come back to the edge cop number c̄(G) we investigate in this paper.
Meyniel extremal families for the new parameter can be defined the same way. More-
over, it follows from Theorem 2.1 that every d-Meyniel extremal family for the classic
cop number is (d/2)-Meyniel extremal for the edge cop number. In particular, the fam-
ily of incidence graphs of the projective plane is (1/2

√
2)-Meyniel extremal. However,

this time it is not clear if the constant is best possible. Our goal is to show that, in fact,
this family is (1/

√
2)-Meyniel extremal for the edge variant of the game. As a result,

this family provides the best known construction, as for the classic case.
We start with the following observation, the counterpart of the observation of Aigner

and Fromme from [1] that appears to be slightly more complicated for the edge cop
number.

Lemma 4.1. Let G be any connected graph with girth at least 6. Then

c̄(G) ≥ δ(G).

Proof. Let G = (V,E) be any connected graph with girth at least 6. We start with a
few definitions. Suppose that the robber is not caught, occupies an edge uv ∈ E, and
it is his turn to make a move. An edge incident to uv is called bad if it is occupied by a
cop (that is, the distance to a closest cop is 0). An edge incident to uv that is not bad
is called threatening if it is incident to an edge occupied by a cop (that is, the distance
to a closest cop is 1). An incident edge that is neither bad nor threatening is called
good (that is, the distance to a closest cop is at least 2). Similarly, an endpoint v is bad
if it is incident to a bad edge. An endpoint v that is not bad is called threatening if it
is incident to a threatening edge. Finally, v is good if it is neither bad nor threatening.

We play the game against δ(G)− 1 cops. Since G is connected, we may assume that
all cops start at a single edge. Since the girth is at least 6, the robber can start by going
to an edge uv that is at distance at least 3 from all the cops. No matter what they do
in the next round, the distance between players is going to be at least 2 so both u and
v are not going to be bad. We will show (by induction) that the robber has a strategy
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to guarantee that at every round of the game, when it is his turn to make a move, he
is not caught and at least one endpoint is not bad.

Suppose that the robber occupying an edge uv is not caught, at least one endpoint is
not bad, and it is his turn to move. If both endpoints are good, the robber stands still.
No matter what cops do in the next round, both endpoints might become threatening
but are still not bad. Suppose then that u is threatening or bad, and v is threatening
or good (in particular, there is no bad edge incident to v). At least one cop is within
distance 2 from u in G−uv (the distance between an edge incident to u and u is 1, etc.).
Let us fix one such cop and call him dangerous. Since the girth is at least 6, dangerous
cop is at distance at least 3 from v in G − uv. As a result, dangerous cop does not
make any edge incident to v threatening. Moreover, every other cop can make at most
one edge incident to v threatening. Since there are δ(G)− 2 other cops (dangerous cop
is disregarded) and the number of edges incident to v is δ(G)− 1, there is at least one
edge, say, vw that is good. The robber moves from uv to vw, and no matter what cops
do in the next round w is not going to be bad. The result holds. �

Since G(P ) is (q + 1)-regular, it follows from Lemma 4.1 that c̄(G(P )) ≥ q + 1, and
so the family is (1/

√
2)-Meyniel extremal. On the other, from Theorem 2.1 we have

that c̄(G(P )) ≤ c(G(P )) + 1 = q+ 2, so only two values are possible. We eliminate one
of them in the next theorem.

Theorem 4.2. Let P := PG(2, q) be the projective plane of order q. The incidence
graph G(P ) of P satisfies the following:

c̄(G(P )) = q + 1.

Proof. As we already mentioned, the lower bound of q + 1 follows immediately from
Lemma 4.1. It remains to show that q+1 cops can catch the robber. We will distinguish
two phases of the game. In the first phase, we provide a strategy for cops so that one of
them moves at distance one from the robber. (In fact, for that we could use the property
that c(G(P )) = q + 1 and exploit an idea from the proof of Theorem 2.1 to couple the
classic game with the game on edges. However, we provide an explicit strategy in order
to avoid referencing to a result from [25] so that the argument presented here is self-
contained.) During the second phase, the cop that is close to the robber keeps chasing
him and the remaining cops make sure the bad guy is caught.

The cops start the game (and the first phase) by occupying q + 1 independent edges
ci = cipc

i
` (i = 1, 2, . . . , q + 1)—see Figure 2. Subscripts p and ` indicate that a vertex

is a point and a line, respectively. We may assume that the robber goes to another in-
dependent edge r = rpr`; otherwise, he would be caught immediately. Let p1, p2, . . . , pq
be points on the line rl that are different than rp (recall that each line consists of q+ 1
points). For each i = 1, 2, . . . , q, a pair of points pi, c

i
p belongs to a line `i, and so ith

cop can be moved from cipc
i
` to cip`i. The remaining (q + 1)st cop has similar task. He

is moved from cq+1
p cq+1

` to cq+1
p `q+1, where `q+1 is the line containing both cq+1

p and rp.
Regardless of what the robber does in the next round, ith cop (i = 1, 2, . . . , q) moves to
pi`i, (q + 1)st cop moves to rp`q+1, and some cop occupies an edge incident to the one
occupied by the robber—again, see Figure 2. This cop receives the task of chasing the
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p1

cqc2r c1cq+1

`q+1 r``

cq+1
p rp

cq+1
` cq`c2`c1``q`2`1

cqpc1p c2ppqp2

Figure 2. The 1st phase of the game played on G(P ).

robber till the end of the game. In order to keep the notation simple we may relabel
cops so that (q + 1)st cop is chasing the robber.

rcq+1

cq`c2`c1``r`cq+1
`

rp p1 p2 pq cp

Figure 3. The 2nd phase of the game played on G(P ).

Let cp be any point and c1` , c
2
` , . . . , c

q
` , ` be q + 1 lines this point belongs to. At the

beginning of the second phase, the remaining q cops move to the star centered at cp; that
is, ith cop (i = 1, 2, . . . , q) goes to cpc

i
`—see Figure 3. (Recall that G(P ) is connected

so it is possible.) Once they at the desired positions, they wait till the robber and the
chasing cop share a point; that is, say, the robber occupies an edge rpr` and the chasing

cop is at rpc
q+1
` . A subtle but important observation is that we may assume that rp

belongs to `. Indeed, if it were not the case, then rp would have to belong to a line ci`
for some i, as rp and cp share some line. But, since in the previous round the robber

was at the edge rpc
q+1
` currently occupied by the chasing robber, the cop occupying cpc

i
`

could have moved to rpc
i
` and the robber would have been already caught.

Assuming that rp belongs to `, we get that no pi (i = 1, 2, . . . q) belongs to `, since
this would imply that there is a cycle (pi, `, rp, r`) of length 4 but the girth of G(P ) is

6. Hence, for every i = 1, 2, . . . q we have that pi belongs to cj` for some j = 1, 2, . . . , q,
as pi and cp belong to some line. In the next round, the regular team of q cops moves
so that each point pi (i = 1, 2, . . . q) is incident to a cop; the chasing cop keeps doing
his job. No matter what the robber does in the next round, he will be trapped and the
end of the game is near. The result holds. �
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5. Random graphs

Let us recall the classic model of random graphs that we study in this paper.
The binomial random graph G(n, p) is defined as a random graph with vertex set
[n] = {1, 2, . . . , n} in which a pair of vertices appears as an edge with probability
p, independently for each such a pair. As typical in random graph theory, we shall con-
sider only asymptotic properties of G(n, p) as n→∞, where p = p(n) may and usually
does depend on n. We say that an event in a probability space holds asymptotically
almost surely (a.a.s.) if its probability tends to one as n goes to infinity. (For more on
random graphs see, for example, [6, 18].)

Let us first briefly describe some known results on the classic cop number of G(n, p).
(One can find much more on the related topics: for random d-regular graphs see [26],
for random geometric graphs see [5, 2], and for the robber performing a random walk
see [19, 20].) Bonato, Wang, and the third author investigated such games in G(n, p)
random graphs, and their generalizations used to model complex networks with a power-
law degree distribution (see [11]). From their results it follows that if 2 log n/

√
n ≤ p <

1− ε for some ε > 0, then a.a.s.

c(G(n, p)) = Θ(log n/p).

so Meyniel’s conjecture holds a.a.s. for such p. Moreover, if p = n−o(1) and p < 1 − ε
for some ε > 0, then a.a.s.

c(G(n, p)) = (1 + o(1)) log1/(1−p) n. (5.1)

A simple argument using dominating sets shows that Meyniel’s conjecture also holds
a.a.s. if p tends to 1 as n goes to infinity (see [25] for this and stronger results). Some-
what surprisingly, it was shown by  Luczak and the third author [22] that for sparse
random graphs the cop number has more complicated behaviour. It follows that a.a.s.
logn c(G(n, nx−1)) is asymptotically equal to the function f(x) shown in Figure 4. More-
over, Bollobás, Kun, and Leader [7] showed that if d = p(n−1) > (2 + ε) log n for some
ε > 0, then a.a.s. c(G(n, nx−1)) = O(

√
n log n).

Figure 4. The “zigzag” function f .

From the above results, we know that Meyniel’s conjecture holds a.a.s. for random
graphs except perhaps when np = n1/(2k)+o(1) for some k ∈ N, or np = no(1). In [27],
Wormald and the third author of this paper showed that the conjecture holds a.a.s.



COPS AND ROBBERS PLAYING ON EDGES 11

in G(n, p) provided that np > (1/2 + ε) log n for some ε > 0. Note that Meyniel’s
conjecture is restricted to connected graphs, but G ∈ G(n, p) is a.a.s. disconnected when
np ≤ (1 − ε) log n. Thus, the following equivalent statement of Meyniel’s conjecture
holds a.a.s. for G ∈ G(n, p) for all p: if G is connected then c(G) = O(

√
n).

In this paper, we investigate the edge cop number c̄(G). Since there is only a multi-
plicative constant factor difference between the two cop numbers (by Theorem 2.1), all
known results for random graphs also hold for the edge cop number (up to a constant).
In particular, Meyniel’s conjecture holds a.a.s. for the edge cop number for G ∈ G(n, p)
for all p. On the other hand, the asymptotic value of the classic cop number is known
only for dense random graphs; that is, when p = n−o(1). We will show that in this
case, the edge cop number is essentially two times smaller than its classic counterpart
(see (5.1)).

Theorem 5.1. Let p = p(n) be such that p = n−o(1) and p < 1 − ε for some ε > 0.
Then, a.a.s.

c̄(G(n, p)) =

(
1

2
+ o(1)

)
log1/(1−p) n.

Before we move to the proof of this theorem, let us mention about an asymptotic
behaviour of the logarithm used in the formula for the edge cop number, and state one
general observation that will be useful in the proof. If p is a constant smaller than 1,

log1/(1−p) n = Θ(log n).

However, if p = o(1) we have that

log1/(1−p) n =
log n

− log(1− p)
= (1 + o(1))

log n

p
, (5.2)

which tends to infinity faster than natural logarithm.
A set of vertices S is a dominating set in G if each vertex not in S is joined to some

vertex of S. The domination number of G, written γ(G), is the minimum cardinality of
a dominating set in G. A straightforward observation is that c(G) ≤ γ(G) (place a cop
on each vertex of dominating set with minimum cardinality and catch the bad guy in
the next round). Our goal here is to discover a similar bound for the edge cop number.

An edge cover of a set S is a set of edges C in a graph induced by S such that each
vertex in S is incident with at least one edge in C. A minimum edge covering of S is an
edge covering of smallest possible size. The edge covering number of a set S inducing
a graph with no isolated vertex, written ρ(S), is the size of a minimum edge covering
of S. Finally, for a graph G with no isolated vertex, let

ξ(G) = min{ρ(S) : S ∈ S},
where S is a family of dominating sets satisfying the following property: for every set
S ∈ S we have that a graph induced by S has no isolated vertex. (The reason G is
assumed to have no isolated vertex is to make sure ξ(G) is well defined.)

Now, we are ready to state a lemma that will be very useful in investigating dense
random graphs. We present it as an independent result since it might be also applied
to other families of graphs.
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Lemma 5.2. Let G = (V,E) be any connected graph. Then

c̄(G) ≤ ξ(G) + 1.

Note that the result is sharp, since for any n ≥ 4 we have c̄(Kn) = 2 and ξ(Kn) = 1.

Proof of Lemma 5.2. Let S ∈ S be a dominating set that yields ξ(G) with a minimum
edge cover C of cardinality c = ξ(G). The regular team of c cops start at the edge cover
C; one extra cop starts anywhere in the graph. The robber goes to an edge e ∈ E.
Since every vertex of S is covered, the robber is immediately caught if e has at least
one endpoint in S. Hence, we may assume that both endpoints of e (say, u and v) are
not in S. Since u is dominated by S (recall that S is a dominating set), there exists
u′ ∈ S such that uu′ ∈ E. Since S induces no isolated vertex and C covers all vertices
of S, there is an edge e′ in C incident to u′. The cop occupying e′ moves to uu′ and this
cop will have a special task of chasing the robber till the end of the game. (If there are
more cops incident to u′, the decision which cop should be chasing the robber can be
made arbitrarily.) Now, the extra cop replaces the chasing cop, joins the regular team
of c cops, and moves to the edge e′ of the edge cover C that was previously occupied by
the chasing cop. Since G is connected, this task is possible at takes at most |V (G)| − 1
steps. Once he is at the desired position, cops look around and see the robber moving
to an edge e′′ with endpoints x and y. As before, we may assume that neither endpoint
is in S. The chasing cop moves as usual to secure one endpoint, say x. For the other
endpoint, y, we take y′ ∈ S such that yy′ ∈ E and move a cop occupying an edge
incident to yy′ towards the robber. The robber is caught in the next round and the
result holds. �

Now we come back to the proof of the main result of this section.

Proof of Theorem 5.1. It follows from (5.1) that a.a.s. c(G(n, p)) = (1+o(1)) log1/(1−p) n.
By Theorem 2.1 we have c̄(G) ≥ c(G)/2, and the lower bound follows immediately.

Let
k = log1/(1−p) n+ 2 log1/(1−p) ω,

where ω = ω(n) = p−1 log n. Clearly, ωp = log n → ∞ as n → ∞, but note also that
log1/(1−p) ω = o(k) so, in fact, k = (1 + o(1)) log1/(1−p) n. Indeed, if p = Ω(1), then
log1/(1−p) ω = Θ(log log n) = o(log n) = o(k). On the other hand, for p = o(1) we have

ω = no(1) and

log1/(1−p) ω = (1 + o(1))
logω

p
= o

(
log n

p

)
= o(k).

For the upper bound we are going to use Lemma 5.2. Our goal is to find a set that is
a.a.s. dominating and has small edge cover. Fix any set X of cardinality k. First of all,
we will show that a.a.s. there exists a set Y ⊆ X of cardinality log1/(1−p) n+log1/(1−p) ω =
k−log1/(1−p) ω which has a perfect matching. In order to do it, we consider the following
process. Select any vertex x1 and expose all edges from x1 to other vertices of X. If
at least one edge is found, select any neighbour x2 of x1 and pick another vertex
x3 ∈ X \ {x1, x2}. This time we expose all edges from x3 to X \ {x1, x2, x3} with a
hope that at least one edge is discovered and the process can be continued. The only
reason for the process to terminate at a given round is when no edge is found. We will
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show that a.a.s. the process does not stop before all but r := log1/(1−p) ω vertices are
matched. Indeed, the probability the process does not stop earlier is equal to(

1− (1− p)k−1
) (

1− (1− p)k−3
)
· . . . ·

(
1− (1− p)r+1

)
=

k/2−1∏
i=r/2

(
1− (1− p)2i+1

)

= exp

−(1 + o(1))(1− p)
k/2−1∑
i=r/2

(1− p)2i


= exp

(
−(1 + o(1))(1− p)((1− p)2)r/2 − ((1− p)2)k/2

1− (1− p)2

)
= exp

(
−(1 + o(1))

1− p
1− (1− p)2

ω−1
)

= exp
(
−O
(

(pω)−1
))

,

which tends to one, since pω tends to infinity as n→∞.
Second of all, we will show that a.a.s. Y ⊆ X dominates all vertices of V \X. (Note

that edges between Y and V \X are not exposed yet. However, edges between Y and
X \ Y are already exposed and so we cannot investigate if X \ Y is dominated by Y or
not.) Since |Y | = log1/(1−p) n + log1/(1−p) ω and |X| = log1/(1−p) n + 2 log1/(1−p) ω, this
probability is equal to(

1− (1− p)|Y |
)n−|X| ≥ 1− (n− |X|)(1− p)|Y |

≥ 1− n(1− p)log1/(1−p) n+log1/(1−p) ω

= 1− 1/ω,

which tends to one as n→∞.
Third of all, we will show that a.a.s. the set X \ Y induces a graph with no isolated

vertex. (Note that edges within X \ Y are not exposed yet.) The probability that
a given vertex in X \ Y is isolated is (1 − p)|X\Y |−1 = O(ω−1). Hence, the expected
number of isolated vertices is

O(ω−1 log1/(1−p) ω) = O

(
logω

log n

)
= o(1),

and the result holds by Markov’s inequality.
Putting the three claims together we will get the upper bound. It follows that a.a.s.

X is a dominating set (since Y ⊆ X dominates V \X a.a.s.). Moreover, a.a.s.

ρ(X) ≤ ρ(Y ) + ρ(X \ Y ) ≤ |Y |
2

+ |X \ Y | = 1

2
log1/(1−p) n+

3

2
log1/(1−p) ω,

since a.a.s. Y has a perfect matching, and X \ Y induces no isolated vertex so one can
simply take any incident edge for each vertex of X \ Y . Hence, a.a.s.

ξ(G) ≤ ρ(X) ≤ (1/2 + o(1)) log1/(1−p) n.
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The proof of the upper bound follows, since c̄(G) ≤ ξ(G) + 1 by Lemma 5.2. �

The upper bound presented in the proof of the previous theorem can be easily ex-
tended to sparser graphs. As we already mentioned, the reason we focus on p = n−o(1)

is because for sparser graphs the bounds for the classic cop number are not tight and
so there is no easy argument to get a matching lower bound.

Moreover, let us mention that it is known that a.a.s. G(n, p) has a perfect matching,
provided that p is above the threshold for disappearing isolated vertices (see, for ex-
ample, [6, 18]). This result could be used to show that the set X in the proof of the
previous theorem has a perfect matching a.a.s. (of course, some rescaling is need, since
the number of vertices is not n, and so the argument is more subtle). We presented an
independent simple proof to make the argument self-contained.

6. Planar graphs

As it was already mentioned in the introduction, Aigner and Fromme [1] proved that
any connected planar graph G satisfies c(G) ≤ 3. Here we prove an analogous result
for the new variant of the game.

Theorem 6.1. Let G be any connected planar graph. Then

c̄(G) ≤ 3.

Before we move to the proof, we note that the bound is best possible, since one
can easily verify that the edge cop number of the graph on Figure 5 is at least 3 (and
consequently, exactly 3).

Figure 5. A plane representation of the soccer ball. (Each pentagon is
surrounded by 5 hexagons.)

The proof is a direct adaptation of the approach taken by Aigner and Fromme [1].
We say that a cop c controls a path P if whenever the robber tries to cross P , then
he is caught by c on his responding moves. First we prove an auxiliary result showing
that one cop suffices to control any shortest path in an arbitrary connected graph.
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Lemma 6.2. Let G be any graph, u, v ∈ V (G), u 6= v, and P = (u = v0, v1, . . . , vs = v)
be a shortest path between u and v. A single cop can control P after a finite number
moves.

The idea of the proof of Theorem 6.1 is divide the pursuit into stages. In stage i,
we assign to the robber r a certain subgraph Gi, the robber’s territory, which contains
all edges which r may still safely enter, and we show that, after a finite number of
cop-moves, Gi is reduced to Gi+1 ( Gi. Eventually, there is no safe edge left for the
robber and the game ends. In each iteration, at most two shortest paths in Gi must be
controlled. Due to Lemma 6.2, this requires one cop per path, and the third cop moves
to control another shortest path in Gi. See [1] for the details of the proof.

It remains to prove the auxiliary lemma.

Proof of Lemma 6.2. We will deduce Lemma 6.2 from a similar result from [1]. In the
following definition we assume that the robber and cops play on vertices. We say that
a set of cops guard (vertex-wise) a path P from a set of robbers if whenever a robber
steps onto P , then he steps onto a cop or is caught by a cop on his responding move.
It was shown in [1] that one cop suffices to guard any shortest path from one robber.
In order to achieve it, a projection of the vertex r occupied by the robber on the path
P was introduced. This projected vertex, s, was called the shadow of the robber. The
cop strategy is simply to catch the shadow of the robber and keep following it. We will
show that this is also the case for the new variant of the game.

We start the game played on edges with the cop going to any edge c on the path
P = (v0, v1, . . . , vs) and r goes anywhere. At any point of the game played on edges and
for any player p occupying an edge e (regardless whether it is a cop or the robber), we
couple p with two vertex players p(1) and p(2) which are the endpoints of e. Every move
of p induces a move of both p(1) and p(2). In particular, every edge-move of r induces
a vertex-move of r(1) and r(2). Clearly, when the robber moves, the corresponding
vertices r(1) and r(2) move to their neighbours and the distance between them is one.
The key observation is that the corresponding shadows s(1) and s(2) move to neighbours
or remain still, and the distance between s(1) and s(2) is always at most one. In order
to show that a cop c controls P , we prove that c(1) and c(2) can guard P from r(1) and
r(2) by catching their shadows s(1) and s(2), respectively. (If s(1) = s(2) = s, then
c(1) catches s and c(2) occupies any neighbour of s.)

During the first phase of the game, the cop plays so that c(1) catches s(1) as in the
classic version of the game. If s(2) = s(1) or s(2) = c(2), then the path is already
guarded. Hence, due to the symmetry, we may suppose that c(1) = s(1) = vi, s(2) =
vi+1, and c(2) = vi−1. If the robber stands still, we can easily catch his shadows: the
cop moves to get c(1) = vi+1 = s(2) and c(2) = vi = s(1), and the path is guarded, since
we may always swap c(1) and c(2), if needed. If the robber moves so that s(1) = vi−1
and s(2) = vi, the cop does not move and the desired property holds. If the robber
moves so that s(1) = s(2), the cop can respond to finish the task as well. The only
reasonable move for the robber is to move so that s(1) = vi+1 and s(2) = vi+2 (if such a
move exists), but the cop can chase the robber and move towards vs with no problem.
However, since the path is finite, the robber has to finally give up and at some point of
the game both shadows are guarded.
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It remains to show that the cop has a strategy to keep following the shadows. Due to
the symmetry, we may assume that s(1) is always as close to v0 as s(2). Suppose first
that s(1) = s(2) = c(1) = vi and c(2) = vi+1 (the case c(2) = vi−1 is symmetric and
so omitted). If the robber stands still or moves so that s(1) = s(2) = vi+1 or s(1) = vi
and s(2) = vi+1, the cop does not move. If the robber moves so that s(1) = s(2) = vi−1
or s(1) = vi−1 and s(2) = vi, then the cop moves towards v0. Suppose then that
s(1) = c(1) = vi and s(2) = c(2) = vi+1. If the robber moves so that s(1) = vi−1
and s(2) = vi (or s(1) = vi+1 and s(2) = vi+2), the cop moves towards v0 (or vs,
respectively). If the robber moves so that s(1) = s(2), the cop remains still. Hence,
the cop has a strategy to guard the path P and the proof is finished. �

7. Open problems

We finish the paper with a few open problems and future directions.

• As we already mentioned, the upper bound for c̄(G) in Theorem 2.1 is sharp.
Graphs with c(G) = 1 are characterized (see [23]) and in this paper we charac-
terize graphs with c̄(G) = 1. Hence, there is a characterization of graphs with
c(G) = 1 and c̄(G) = 2. Is there any graph with c̄(G) = c(G) + 1 > 2? If
the answer is yes, it should be the case that these graphs have some structure
that should be relatively easy to investigate. We leave it as an open problem to
characterize graphs with this property.
• The lower bound for c̄(G) in Theorem 2.1 is equivalent to c(G) ≤ 2c̄(G). How-

ever, it follows from Corollary 3.5 that there is no graph G with c̄(G) = 1 and
c(G) = 2. We provided an example with c(G) = 3 and c̄(G) = 2 but no example
is known for which c(G) = 2c̄(G). We feel that there is a small improvement
possible and, in fact, c(G) ≤ 2c̄(G)− 1 for any connected graph. On the other
hand, the result for random graphs implies that the multiplicative factor of 2
cannot be improved.
• Let

A =

{
c̄(G)

c(G)
: G is a connected graph

}
.

It follows from Theorem 2.1 that the closure of A, Ā, satisfies the following

Ā ⊆ B :=

[
1

2
, 1

]
∪
{

2,
3

2
,
4

3
, . . .

}
,

but all we showed is that {1/2, 2/3, 1, 2} ⊆ Ā. Is it true that A = B?
• We characterized graphs with the edge cop number one. Is there a characteri-

zation of graphs with c̄(G) = k for some k ∈ N?
• We concentrated on dense random graphs; that is, when p = n−o(1). As we

mentioned earlier, the asymptotic value of the classic cop number is not known
for sparse random graphs. However, it still might be possible that the edge cop
number is essentially two times smaller than its classic counterpart; that is, it
might be possible to show that a.a.s. the ratio c̄(G(n, p))/c(G(n, p)) is equal to
1/2 + o(1) without investigating the behaviour of c(G(n, p)).
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