
BRUSHING WITHOUT CAPACITY RESTRICTIONS

DARRYN BRYANT, NEVENA FRANCETIĆ, PRZEMYS LAW GORDINOWICZ, DAVID PIKE,
AND PAWE L PRA LAT

Abstract. In graph cleaning problems, brushes clean a graph by traversing it subject
to certain rules. Various problems arise, such as determining the minimum number of
brushes that are required to clean the entire graph. This number is called the brushing
number. Here, we study a new variant of the brushing problem in which one vertex is
cleaned at a time, but more than one brush may traverse a dirty edge. In particular,
we obtain results on the brushing number of Cartesian products of graphs and trees,
as well as upper and lower bounds on the brushing number in the general case.

1. Introduction

In this paper, we study a natural variant of the graph cleaning problem that was
introduced by McKeil [9] in which all edges and vertices of a graph are initially consid-
ered to be contaminated. Cleaning agents called brushes travel throughout the graph,
decontaminating as they go. Once each vertex has been visited, and each edge has
been traversed by a brush, the graph has then been cleaned, although in certain models
recontamination may also occur. The model considered in Chapter 3 of [9] permits
edges to be traversed by more than one brush at a time, and also permits edges to be
traversed on multiple occasions.

In [10], restrictions are imposed whereby only dirty edges can be traversed, and each
edge can be traversed by at most one brush. This model corresponds to the minimum
total imbalance of the graph which is used in the graph drawing theory [4], and is well
studied, especially when it is performed on random graphs [1, 13, 17]. (See also [8]
for the algorithmic side, [11, 16] for a related model of cleaning with Brooms, [12] for
the relationship with other elimination schemes, and a combinatorial game [6].) In the
present paper we relax one of these restrictions and allow dirty edges to be traversed
by multiple brushes, although we retain the condition that an edge can be traversed on
only one occasion.

Having been inspired by chip firing processes [2], the manner in which brushes dis-
perse from an individual vertex is such that they do so in unison, provided that their
vertex meets the criteria to fire. Models in which multiple vertices may fire simultane-
ously are called parallel cleaning models (see [5] for more details). In contrast, sequential

1991 Mathematics Subject Classification. 68P10,68R10,05C70.
Key words and phrases. network cleaning, brush number, directed path covering.
The first author gratefully acknowledges the support of the Australian Research Council via grants

DP0770400, DP120100790 and DP120103067. The fourth author gratefully acknowledges support from
NSERC, CFI and IRIF. The fifth author gratefully acknowledges support from NSERC and Ryerson
University.

1

2DARRYN BRYANT, NEVENA FRANCETIĆ, PRZEMYS LAW GORDINOWICZ, DAVID PIKE, AND PAWE L PRA LAT

parallel models mandate that vertices fire one at a time. The variant considered in [10]
and the one we consider in this paper are sequential in nature.

When considering a graph or network, the central question under investigation is that
of determining the brush number for the graph (i.e., the minimum number of brushes
that enable the graph to be cleaned), as well as to describe a corresponding cleaning
strategy. Subsequent to presenting a more formal definition of our model in Section 2,
we establish some general bounds for the brush number of an arbitrary graph, including
bounds that are expressed in terms of parameters such as cutwidth and bisectionwidth.
We then investigate two specific classes of graphs, namely Cartesian products and trees.

For Cartesian products we prove a general upper bound on the brush number, and
then establish exact values for the brush numbers of m by n grids and hypercubes. For
trees, we prove that if a tree T has d`(T) vertices of degree 1, then exactly (d`(T)+1)/2
brushes are required for an optimal cleaning strategy when d`(T) is odd. If d`(T) is even,
then the minimum number of brushes that are required is either d`(T)/2 or d`(T)/2+1,
which is to say that trees with an even number of vertices of degree 1 are partitioned
into two sets depending on whether their brush number equals d`(T)/2 or exceeds it by
1.

2. Definitions

As already noted, the graph cleaning model we consider here differs from the one
presented in [10] in that we allow edges to be traversed by multiple brushes. Before we
define the model rigorously, we present a simple example illustrated in Figure 1.

a b

c

d

e f

2

a b

c

d

e f

1

1

ba

c

d

e f

2

a b

c

d

e f

2

a b

c

d

e f
11

a b

c

d

e f
2

a b

c

d

e f
2

Figure 1. A graph G with an initial configuration of 2 brushes.

In this example, all edges and vertices are initially dirty and we place two brushes at
vertex a. As vertex a contains at least as many brushes as dirty incident edges, it is able
to fire. Thus, at Step 1 vertex a is cleaned and a brush is sent down each dirty edge:
edges ab and ac have been cleaned; vertices b and c have one fewer dirty incident edges.
At Step 2, vertices c, d, e and f cannot be cleaned as they each have fewer brushes than
dirty incident edges; vertex b is cleaned instead and one brush is sent to c. At Step
3, the only vertex ready to be cleaned is vertex c. It is at this point that the cleaning
process considered in this paper differs from the process described in [10]. In [10], only
one brush is permitted to traverse an edge. So one brush would be moved from c to
d, whilst the other would remain at c. With our variant of the cleaning process, more

BRUSHING WITHOUT CAPACITY RESTRICTIONS 3

than one brush can be moved through a dirty edge. Thus, the two brushes are moved
from c to d (no advantage can be gained by leaving a brush behind). At Step 4, d
is cleaned and the remaining two vertices (e and f) can be cleaned at the next two
steps (although all edges are clean prior to the final step). Under our cleaning model
this example graph can be cleaned with just two brushes, whereas under the model
considered in [10] three brushes would be required.

Now we formally define the cleaning process we are considering. Let G = (V,E)
be any finite, undirected graph. The initial configuration of brushes is given by the
function ω0 : V → N0, where N0 = {0, 1, 2, . . .}, ω0(v) is the number of brushes initially
at vertex v, and all vertices and edges of the graph are initially dirty. At each step t of
the process, ωt(v) denotes the number of brushes at vertex v ∈ V , and Dt ⊆ V denotes
the set of dirty vertices. An edge uv ∈ E is dirty if and only if both u and v are dirty;
that is, {u, v} ⊆ Dt. Finally, let Dt(v) denote the number of dirty edges incident to v
at step t; that is,

Dt(v) =

{
|N(v) ∩Dt| if v ∈ Dt

0 otherwise

(where N(v) denotes, as usual, the neighbourhood of v.)

Definition 2.1. The (generalized) cleaning process P(G,ω0) = {(ωt, Dt)}Tt=0 of
an undirected graph G = (V,E) with an initial configuration of brushes ω0 is as
follows:

0 : Initially, all vertices are dirty: D0 = V ; set t = 0
1 : Let αt+1 be any vertex in Dt such that ωt(αt+1) ≥ Dt(αt+1). If no such vertex

exists, then stop the process (set T = t), return the cleaning sequence α =
(α1, α2, . . . , αT), the final set of dirty vertices DT , the final configuration
of brushes ωT , and the distribution of brushes δ.

2 : Assign to each dirty edge vαt+1 incident to αt+1 a natural number δ(vαt+1)
such that the sum of numbers assigned is at most ωt(αt+1); in other words, for
each dirty neighbour v of αt+1, let δ(vαt+1) ∈ N and

ρ(αt+1) =
∑

v∈N(αt+1)∩Dt

δ(vαt+1) ≤ ωt(αt+1). (1)

3 : Clean αt+1 and all dirty incident edges by moving δ(vαt+1) brushes from
αt+1 to each dirty neighbour v of αt+1. Consequently, Dt+1 = Dt \ {αt+1},
ωt+1(αt+1) = ωt(αt+1) − ρ(αt+1), and for every v ∈ N(αt+1) ∩ Dt, ωt+1(v) =
ωt(v) + δ(vαt+1), otherwise ωt+1(v) = ωt(v).

4 : Set t = t+ 1 and go back to 1 .

The function δ assigns the number of brushes that traverse a dirty edge. In the
model considered in [10], exactly one brush could be moved through each dirty edge;
that is, δ(uv) = 1 for each uv ∈ E (provided that the graph has been cleaned, otherwise
δ(uv) = 1 for each pair of clean vertices). We also mentioned that there is no advantage
of leaving a brush behind; hence we may always assume that ρ(αt+1) = ωt(αt+1),
provided that there is at least one dirty edge incident to αt+1 at the time it is cleaned

4DARRYN BRYANT, NEVENA FRANCETIĆ, PRZEMYS LAW GORDINOWICZ, DAVID PIKE, AND PAWE L PRA LAT

(that is, provided that N(αt+1) ∩ Dt 6= ∅). In other words, in such situations, the
inequality in (1) is, in fact, equality.

It was shown in [10] that, given a graph G and an initial configuration ω0, the cleaning
process of [10] returns a unique final set of dirty vertices. Consequently, if there exists
a cleaning sequence that cleans G, we know that every (legal) cleaning sequence will
clean G. Such is not the case here; whether a graph is cleaned entirely or not may
depend on the function δ (rather than just on the initial configuration ω0 of brushes).
However, it still makes sense to ask for the minimum number of brushes distributed on
the vertices of a given graph G having the initial configuration of brushes ω0 (this time,
together with the function δ and cleaning strategy) needed to clean G.

Definition 2.2. A graph G = (V,E) can be cleaned by the initial configuration of
brushes ω0 if there is a cleaning process P(G,ω0) that returns an empty final set of
dirty vertices (that is, DT = ∅).

Let the (generalized) brush number of G, denoted B(G), be the minimum number
of brushes needed to clean G; that is,

B(G) = min
ω0:V→N0

{∑
v∈V

ω0(v) : G can be cleaned by ω0

}
.

The brush number for the model in [10] was denoted by b(G). Since there were more
restrictions for this process than for the generalized one which we are considering, we
immediately get that B(G) ≤ b(G). As we will see, the difference can be arbitrarily
large although there are some classes of graphs for which B(G) = b(G).

When a graph G is cleaned using the cleaning process, each edge of G is traversed by
at least one brush. Note that no brush may return to a vertex it has already visited,
motivating the following definition.

Definition 2.3. The brush path of a given brush is the path formed by the set of
edges cleaned by that brush.

By definition, G can be covered by B(G) brush paths. The minimum number of
(undirected) paths by which a graph G can be covered therefore yields a lower bound
for B(G). This is only a lower bound because some path covers would not be valid in
the cleaning process. We will present such examples soon. However, these paths can
be treated as directed paths (with their orientation corresponding to the chronological
direction of the brushes), which gives us another way of thinking about this problem.

Lemma 2.4. B(G) is the minimum number of directed paths in G whose union is
acyclic and covers the edges of G (where acyclic means no directed cycles and where
the two arcs (u, v) and (v, u) are considered to be a cycle).

Proof. One direction is obvious. If the graph can be cleaned with b brushes, then each
brush yields a directed path. At the end of the process every edge is clean, so all edges
are covered by b paths. It remains to show that the union is acyclic. For a contradiction,
suppose that there is a directed cycle v1, v2, . . . , vk. It follows that v2 must have been
cleaned after v1, v3 after v2, and so on. Finally, we deduce that v1 must have been
cleaned after vk and we get a contradiction we were hoping for.

BRUSHING WITHOUT CAPACITY RESTRICTIONS 5

In order to prove the other direction, suppose that there exist b directed paths in
G whose union is acyclic and covers the edges of G. We want to show that the graph
can be cleaned with b brushes and at the end of the process the paths we started with
are yielded. We start with putting one brush at the beginning of each directed path
(there are b brushes in total). Which vertex should be cleaned first? Let us take any
vertex v ∈ V (G). If v has no in-neighbour, it can be cleaned first. Otherwise, we
pick any in-neighbour of v and continue investigation. Since the graph is acyclic, the
process must finish successfully which guarantees that there is a vertex in G that has
no in-neighbour. After cleaning this vertex, we continue the selection process the same
way (applied to the graph with the vertices already cleaned removed) until the whole
graph is cleaned. �

Finally, let us mention that the process of [10] forces each edge to be traversed by
exactly one brush and so G can be decomposed into b(G) brush paths. This yields a
lower bound for b(G), although this bound is often not tight. For example, K4 can be
decomposed into 2 undirected paths but b(K4) = 4.

3. Some observations and upper bounds

In this section, in order to warm up, we make some simple but useful observa-
tions. Suppose first that a graph G on n vertices (together with an initial configu-
ration of brushes) can be cleaned using the cleaning sequence α = (α1, α2, . . . , αn).
In [10] it was shown that the cleaning process can be reversed; that is, the final con-
figuration of brushes can be used to re-clean the graph using the cleaning sequence
α−1 = (αn, αn−1, . . . , α1). This is also the case for the cleaning variant we study in this
paper.

Theorem 3.1. (The Reversibility Theorem)
Given an initial configuration ω0, suppose G can be cleaned yielding final configuration
ωn, n = |V (G)|. Then, given initial configuration τ0 = ωn, G can be cleaned yielding
the final configuration τn = ω0.

Proof. Let α = (α1, α2, . . . , αn) be a cleaning sequence (together with the assignment
and cleaning strategy) of the cleaning process P+ = {(ωt, Dt)}nt=0 which cleans the
graph G. Let E−(αt) = {αtαi ∈ E(G) : i < t} be the set of clean edges incident to αt
when this vertex is about to be cleaned, and similarly let E+(αt) = {αtαi ∈ E(G) : i >
t} be the set of dirty edges. Clearly deg(αt) = |E−(αt)| + |E+(αt)|. Finally, let δ(e),
e ∈ E(G) be the assignment of brushes that is done during the cleaning process P+.

It is straightforward to see that for every t (1 ≤ t ≤ n)

ωn(αt) = ω0(αt) +
∑

e∈E−(αt)

δ(e)−
∑

e∈E+(αt)

δ(e). (2)

(
∑

e∈E−(αt)
δ(e) is the number of brushes sent to αt;

∑
e∈E+(αt)

δ(e) is the number of

brushes sent from αt.) Now, we will show that the cleaning process P− = {(τt, Ct)}nt=0,
τ0 = ωn, can be used to clean G using a cleaning sequence α−1 = (αn, αn−1, . . . , α1); that
is, vertex αn−t+1 is cleaned at time t. We will show that exactly the same assignment

6DARRYN BRYANT, NEVENA FRANCETIĆ, PRZEMYS LAW GORDINOWICZ, DAVID PIKE, AND PAWE L PRA LAT

of brushes, δ(e), can be achieved for the reversed process P− as for P+. For that, we
use induction on t. Since E+(αn) = ∅, it follows from (2) that

τ0(αn) = ωn(αn) = ω0(αn) +
∑

e∈E−(αt)

δ(e) ≥
∑

e∈E−(αt)

δ(e).

This implies that the vertex αn can be cleaned at the first step and the required assign-
ment can be achieved. The basis step is verified.

For the induction step, assume that vertices αn, αn−1, . . . , αk+1 (1 ≤ k < n) are clean
at the beginning of time-step n−k+1 (or, equivalently, at the end of time-step n−k) of
the process P− and that αk received

∑
e∈E+(αk)

δ(e) extra brushes from its neighbours.

It is not difficult to check, again using (2), that αk can be cleaned in this step. Indeed,

τn−k(αk) = τ0(αk) +
∑

e∈E+(αk)

δ(e) = ω0(αk) +
∑

e∈E−(αk)

δ(e) ≥
∑

e∈E−(αk)

δ(e),

and so the vertex αk can be cleaned and the required assignment can be achieved as
well. This finishes the proof of the theorem. �

As B(G) ≤ b(G) any upper bound for b(G) serves as an upper bound for B(G). We
will show in Subsection 5.2 that b(G) − B(G) can be arbitrarily large but there are
families of graphs for which the values are the same. Indeed for any n ∈ N we have
B(Cn) = b(Cn) = 2 where Cn is a cycle of length n, B(Pn) = b(Pn) = 1 where Pn is
a path of length n − 1, and B(Kn) = b(Kn) = bn2/4c where Kn is a clique of order n
(note that one needs to introduce max{n− 2t− 1, 0} brushes in order to clean a vertex
at time t ∈ N). For such families, upper bounds for b(G) turn out to be very useful.

Let us mention one bound that has been used a number of times and which might
also be useful for B(G). From Theorem 3.7 in [1] it follows that

B(G) ≤ b(G) ≤ |E|
2

+
|V |
4
− 1

4

∑
v∈V (G),deg(v) is even

1

deg(v) + 1

for any graph G = (V,E). The proof of this result is non-constructive and the bound
is sharp, for example, for cliques.

4. Relation to the cutwidth and bisection width

In this section, we investigate relations between the brush number, the cutwidth,
and the bisection width of graphs. In the next sections, we will use these relations to
establish bounds on the brush number.

4.1. Lower bound. We start with a definition of the cutwidth.

Definition 4.1. Let G = (V,E) be a graph on n vertices and let f : V → {1, 2, . . . , n}
be a bijection; that is, f is a linear layout of G. The cutwidth of f (with respect to
G) is defined as follows:

cwf (G) = max
1≤i≤n

∣∣∣{uv ∈ E : f(u) ≤ i < f(v)}
∣∣∣.

BRUSHING WITHOUT CAPACITY RESTRICTIONS 7

The cutwidth of G, cw(G), is the minimum cutwidth over all possible linear layouts
of G; that is, cw(G) = minf cwf (G).

In [10] it was observed that the cutwidth serves as a lower bound for b(G). We show
in Theorem 4.2 that cutwidth is also a lower bound for B(G). This lower bound is
sometimes sharp (see, for example, the result for hypercubes (Theorem 5.5)), but is
sometimes very weak (consider, for example, a collection of n disjoint copies of K3:
B(nK3) = 2n whereas cw(nK3) = 2).

Theorem 4.2. For any graph G, B(G) ≥ cw(G).

Proof. The proof is straightforward. Let G = (V,E) be any graph on n vertices, and
consider the cleaning sequence α = (α1, α2, . . . , αn) that yields B(G). Note that α can
be viewed as the linear layout fα : V → {1, 2, . . . , n} defined as follows: fα(αi) = i for
i ∈ {1, 2, . . . , n}. To get the lower bound for B(G), for any i ∈ {1, 2, . . . , n}, let

γi = {uv ∈ E : fα(u) ≤ i < fα(v)} = {αxαy ∈ E : x ≤ i < y},

and note that at the end of time-step i of the process, at least one brush traversed every
edge from γi. Moreover, every edge from γi was traversed by different brushes, as one
end of the edge is still dirty at this point. Therefore, at least |γi| brushes are needed to
clean the graph G. The result follows, since the claim is true for any i and so

B(G) ≥ max
1≤i≤n

|γi| = cwfα(G) ≥ cw(G).

The proof is finished. �

Theorem 4.2 has a useful corollary, but before we state it we need one more definition.

Definition 4.3. Let G = (V,E) be any graph with |V | = n. For S ⊆ V , let e(S, V \S)
denote the number of edges between S and its complement. A bisection of V is a
partition of V into two parts, S and V \ S, such that |S| = bn/2c and |V \ S| = dn/2e.
The size of a bisection (S, V \ S) is the number of edges crossing between the parts;
that is, e(S, V \ S). A minimum bisection is a bisection of V with minimal size.
Finally, the size of a minimum bisection is called the bisection width and denoted by
bw(G).

Corollary 4.4. Let G = (V,E) be any graph on n vertices. For any k ∈ {1, 2, . . . , n},
let

Bk = min
S⊆V,|S|=k

e(S, V \ S).

Then, B(G) ≥ maxk Bk. In particular, B(G) ≥ bbn/2c = bw(G).

Proof. It is enough to notice that for every layout f of G we have the following

cwf (G) = max
1≤k≤n

∣∣∣{uv ∈ E : f(u) ≤ k < f(v)}
∣∣∣ ≥ max

1≤k≤n
Bk,

and so the assertion holds. �

8DARRYN BRYANT, NEVENA FRANCETIĆ, PRZEMYS LAW GORDINOWICZ, DAVID PIKE, AND PAWE L PRA LAT

4.2. Upper bound. The cutwidth of G, cw(G), that served as a lower bound in the
previous subsection is the minimum cutwidth over all possible linear layouts of G. It
turns out that a more restricted version is a convenient, and sometimes sharp, upper
bound for the brush number.

Definition 4.5. The restricted cutwidth of a graph G = (V,E) on n vertices,
cwp(G), is the minimum cutwidth over all possible linear layouts of G that induce a
path; that is,

cwp(G) = min
{
cwf (G) : f−1(i)f−1(i+ 1) ∈ E for all i ∈ {1, 2, . . . , n− 1}

}
,

provided that the graph G has a Hamiltonian path. Otherwise, cwp(G) =∞.

Before we move back to the brush number, note that for every graph G, cw(G) ≤
cwp(G) by the definition of restricted cutwidth.

Theorem 4.6. For any graph G, B(G) ≤ cwp(G).

Proof. If G is not a Hamiltonian graph, the claim is trivial. Otherwise, let f be a linear
layout of G that yields cwp(G). We clean G using the cleaning sequence associated
with the layout f . The edges f−1(i)f−1(i + 1), i = 1, 2, . . . , n − 1, of the Hamilton
path induced by f are called special edges, and the other edges of G are called normal
edges. The cleaning strategy is as follows. Start with b̂ := cwp(G) = cwf (G) brushes at
the vertex f−1(1). At every step of the process, send exactly one brush through each
normal, dirty edge; the remaining brushes are sent through the special, dirty edges that
form a backbone of the graph G. It is clear that this strategy cleans the graph. At the
end of a given time-step t, the number of edges between clean vertices and dirty ones
is |γt|, where

γt = {uv ∈ E : f(u) ≤ t < f(v)}.

Hence, the number of normal edges of this type is |γt| − 1, which is also the number
of brushes that traversed them. All other brushes were available at the beginning
of time-step t and so the number of brushes that were sent through the special edge
f−1(t)f−1(t + 1) is equal to b̂ − (|γt| − 1) ≥ 1. The process can be continued and the
proof is finished. �

5. Cartesian products

In this section, we provide a universal upper bound for the Cartesian product of two
graphs. After that we apply this result to two families of graphs: grids and hypercubes.
We start with a definition of the Cartesian product.

Definition 5.1. The graph G�H is the Cartesian product of graphs G and H.
It consists of the vertex set V (G) × V (H) where (u, v) ∈ V (G�H) is adjacent to
(u′, v′) ∈ V (G�H) when either u = u′ and vv′ ∈ E(H) or v = v′ and uu′ ∈ E(G).

BRUSHING WITHOUT CAPACITY RESTRICTIONS 9

5.1. General upper bound. It can be easily observed that G�H decomposes into
|V (G)| copies of H or |V (H)| copies of G. This property is used in creating an upper
bound for B(G�H). It was shown in [10] that

b(G�H) ≤ |V (H)|b(G) + |V (G)|b(H),

and so this bound can be used as an upper bound for B(G) as well. However, an upper
bound which is often much stronger can be obtained for B(G).

Theorem 5.2. For any two graphs G and H,

B(G�H) ≤ cwp(G�H) ≤ |V (G)|cwp(H) + cwp(G). (3)

Before we give the proof of this theorem, note that by symmetry we also have

B(G�H) ≤ cwp(G�H) ≤ |V (H)|cwp(G) + cwp(H), (4)

so one can use (3) or (4), depending which bound gives a stronger result.

Proof. We will show that cwp(G�H) ≤ |V (G)|cwp(H) + cwp(G), from which the result
follows since B(G�H) ≤ cwp(G�H) (see Theorem 4.6). Note that if either G or H has
no Hamiltonian path, then by definition we have |V (G)|cwp(H) + cwp(G) =∞ and the
result holds. Thus, we assume that G and H both have Hamiltonian paths.

Let (v1, v2, . . . , vn), n = |V (G)|, be a Hamiltonian path in G induced by the linear
layout g which yields cwp(G). Also, let (w1, w2, . . . , wk), k = |V (H)|, be a Hamiltonian
path in H induced the linear layout h of H that yields cwp(H). Consider the Cartesian
product of G and H. Let us colour edges of each copy of H red and edges of each copy
of G green. Copies of G are ordered according to the layout h (that is, the ith copy of
G, Gi, has vertices (v1, wi), (v2, wi), . . . , (vn, wi)). In order to provide an upper bound
of cwp(G�H) we consider the following layout of G�H. Use g applied to G1, then the
inverse of g (that is Hamiltonian path (vn, vn−1, . . . , v1)) applied to G2, then g again but
applied to G3, etc. (See Figure 2 in which dashed edges outline Hamiltonian paths.)

G HHG

Figure 2. The layout used to clean G�H.

Formally, take the following Hamiltonian path in G�H:

((v1, w1), (v2, w1), . . . , (vn, w1),

(vn, w2), (vn−1, w2), . . . , (v1, w2),

(v1, w3), (v2, w3), . . . , (vn, w3), . . .),

10DARRYN BRYANT, NEVENA FRANCETIĆ, PRZEMYS LAW GORDINOWICZ, DAVID PIKE, AND PAWE L PRA LAT

and denote by f the linear layout of G�H which induces this path. Then, for every s
(1 ≤ s ≤ nk) we have∣∣∣{(vj1 , wi1)(vj2 , wi2) ∈ E : f((vj1 , wi1)) ≤ s < f((vj2 , wi2))}

∣∣∣ ≤ n · cwp(H) + cwp(G),

since there are always at most cwp(G) green edges and at most n · cwp(H) red edges.
For example, Figure 3 gives a linear layout of the graph G�H from Figure 2. Here, the
solid edges are the edges of the copies of G (called ‘green’ in the proof) and the dashed
edges are the edges of the copies of H (called ‘red’). The vertical line corresponds to
the restricted cutwidth of this layout. In particular, there are |V (G)|cwp(H) edges of
H and cwp(G) edges of G crossing the vertical line.

Hence cwp(G�H) ≤ cwf (G�H) ≤ n · cwp(H) + cwp(G). (In fact, cwf (G�H) =
n · cwp(H) + cwp(G).) The proof of the theorem is finished. �

Figure 3. The layout used to clean G�H.

5.2. Grids. In this subsection, we investigate grids; that is, Cartesian products of two
finite paths. The bisection width of Pn�Pn is well studied [3, 7, 15]. It is known that
for every n ≥ 2,

Bbn2/2c = bw(Pn�Pn) =

{
n if n is

n+ 1 otherwise.

(Bk was introduced in Corollary 4.4.) For odd n, this will be enough to establish a
lower bound on B(Pn�Pn). For even n ≥ 4, we note that B(n2/2)−1 = B(n2/2)+1 = n+1.
In both cases, it follows from Corollary 4.4 that B(Pn�Pn) ≥ n+ 1. To get a matching
upper bound we simply use Theorem 5.2, since cwp(Pn) = 1.

Theorem 5.3. For every n ∈ N \ {1, 2}, B(Pn�Pn) = n+ 1.

Note that this result can be extended to Cartesian products of non-isomorphic paths.
For any m > n ≥ 2, B(Pm�Pn) = n+ 1. Let us also mention that grids can be used to
show that b(G)−B(G) could be any non-negative integer and that the ratio b(G)/B(G)

BRUSHING WITHOUT CAPACITY RESTRICTIONS 11

can be arbitrarily close to any c ∈ [2,∞). Indeed, the classic brush number was studied
in [10] and for n ∈ N \ {1, 2} we have

b(Pn�Pn)−B(Pn�Pn) = (2n− 2)− (n+ 1) = n− 3.

On the other hand, if m = dane for some a ∈ [1,∞), then

b(Pm�Pn)

B(Pm�Pn)
=
m+ n− 2

n+ 1
→ a+ 1,

as n→∞.
Next, we give an example where b(G)/B(B) is arbitrarily close to any c ∈ [1, 2]. Let

m = dane ≥ n for some a ∈ [1,∞) and let G be a graph obtained from two complete
graphs, Kn and Km, by connecting them by an edge. It is straightforward to see that

B(G) = B(Km) = b(Km) = bm2/4c = m2/4 +O(1)

(we can first clean Km and then reuse the brushes to clean Kn), and that

b(G) = b(Km) + b(Kn) +O(1) = bm2/4c+ bn2/4c+O(1) = (m2 + n2)/4 +O(1)

(since adding an edge to any graph can change the value of the brush number by at
most one). Hence,

b(G)

B(G)
=

(m2 + n2)/4 +O(1)

m2/4 +O(1)
→ 1 +

1

a2
,

as n→∞.

5.3. Hypercubes. As usual, we start with a definition.

Definition 5.4. The vertices of a hypercube Qn are points in an n-dimensional space
over the field with two elements F2 = {0, 1}. Two points are adjacent in Qn if and only
if they differ in exactly one coordinate.

We have Q1 = P2, Q2 = C4, and Q3 is the cube in 3-dimensional space. For every
n ∈ N we have Qn+1 = Q1�Qn.

In [14] it was shown that cw(Qn) = 2
3
(2n − a) where a = 1 if n is even and a = 1

2
otherwise. From Theorem 4.2 we have that B(Qn) ≥ cw(G) giving the lower bound. We
will show that the restricted cutwidth is exactly the same which implies the following
result.

Theorem 5.5. For every n ∈ N, B(Qn) = rn, where

rn =

{
2
3
(2n − 1) if n is even

2
3
(2n − 1

2
) otherwise.

Proof. As we already mentioned, it is enough to show that cwp(Qn) ≤ rn for every
n ∈ N. The proof is by induction on n. Note that cwp(Q1) = cwp(K2) = 1 so the result
holds for n = 1. For every n ≥ 2, it follows from Theorem 5.2 that

cwp(Qn) = cwp(Qn−1�K2) ≤ 2cwp(Qn−1) + 1,

12DARRYN BRYANT, NEVENA FRANCETIĆ, PRZEMYS LAW GORDINOWICZ, DAVID PIKE, AND PAWE L PRA LAT

since cwp(K2) = 1. We will show that it is possible to improve it slightly if n is even;
that is, we will show that for even n,

cwp(Qn) ≤ 2cwp(Qn−1).

This will finish the proof, since

rn =

{
2rn−1 + 1 if n is odd

2rn−1 otherwise,

and so cwp(Qn) ≤ rn for every n ∈ N.
Fix any even n ∈ N, and consider a layout f that yields cwp(Qn). It is enough to

show that cwp(Qn) is even. In fact, we will show that |γt| is even for every t, where

γt = {uv ∈ E : f(u) ≤ t < f(v)}.
Since every vertex has degree n, |γ1| = n is even. Suppose now that |γt| is even and
that there are k edges from vertices with f(u) < t+ 1 to the vertex v with f(v) = t+ 1.
It follows that there are n − k edges from the vertex v with f(v) = t + 1 to vertices
with f(u) > t+ 1. Hence,

|γt+1| = |γt| − k + (n− k) = |γt| − 2k + n,

which is even, since each term is even. The proof is complete. �

6. Trees

In this section we turn our attention towards trees, which appear to be, perhaps
surprisingly, non-trivial to analyze. Since every leaf of a given tree T must start or
finish at least one brush path, then clearly B(T) ≥ dd`(T)/2e where d`(T) denotes the
number of leaves of T .

One insight that will eventually help us to establish an upper bound on B(T) is that
any cleaning strategy for a tree can be easily turned into a strategy in which each brush
starts and ends at a leaf. Similar to Lemma 2.4, there is a natural bijection between
such a cleaning strategy with t brushes and an oriented path covering of the tree that
has t directed paths such that the end-vertices of each directed path in the covering are
vertices of degree 1 in the tree and all paths which cover the same edge are consistently
oriented along that edge.

Since any oriented path covering immediately yields a covering with undirected paths
(by simply disregarding the orientation of the directed covering), we could attempt to
prove that there are trees with large brush number by showing that there are some
trees which cannot be covered by dd`(T)/2e undirected paths. However, it turns out
that dd`(T)/2e paths always suffice.

Theorem 6.1. For every tree T with d`(T) leaves, the edges of T can be covered with
dd`(T)/2e undirected paths.

Proof. Arbitrarily choose a set P of ddl(T)/2e paths in T such that the ends of each
path are leaves, and such that every leaf is the end of some path in P . Suppose e is an
edge that is not covered by P , and let P be a path containing e such that the ends of P
are leaves. Clearly, P exists and P /∈ P . Let P ′, P ′′ ∈ P such that P ′ contains one end

BRUSHING WITHOUT CAPACITY RESTRICTIONS 13

of P and P ′′ contains the other. It is easy to see that the edges of E(P)∪E(P ′)∪E(P ′′)
can be covered by just two paths in T (if x′ and y′ are the ends of P ′, and x′′ and y′′

are the ends of P ′′, then the unique path from x′ to x′′ and the unique path from y′ to
y′′ can be used). Replace P ′ and P ′′ with these two paths and repeat this process until
all the edges of T are covered. �

Given that there are no trees for which an undirected path covering with dd`(T)/2e
paths does not exist, it is tempting to speculate that that dd`(T)/2e might be the actual
value of B(T) for every tree T . However, there do exist examples of trees with an even
number of leaves and a brush number of d`(T)/2 + 1 (see Figure 4 for the smallest
example, which has 6 leaves). As it happens, the worst scenario possible is that the
brush number of T exceeds d`(T)/2 by just 1. The rest of this section is devoted to
proving the following result.

Figure 4. The smallest example of a tree with B(T) = d`(T)/2 + 1.

Theorem 6.2. Let T be any tree with d`(T) leaves. Then, the following hold.

(i) If d`(T) is odd, then

B(T) =
d`(T) + 1

2
.

(ii) If d`(T) is even, then

d`(T)

2
≤ B(T) ≤ d`(T)

2
+ 1.

In order to prove the theorem we need several lemmata that we state next (their
proofs will follow in due course). The first one implies that in order to prove the main
theorem it is enough to do so for trees in which every internal vertex has degree 3. Let
T denote this family of trees.

Lemma 6.3. Let T be any tree with d`(T) leaves and let B(T) be its brush number.
There exists a tree T ∗ ∈ T such that d`(T) = d`(T

∗) and B(T) ≤ B(T ∗).

It follows from Lemma 6.3 that if there exists a counterexample T to one of the two
assertions (i) and (ii) stated in Theorem 6.2, then there is a counterexample T ∗ from
the family T with the same number of degree 1 vertices as T .

Before we present the second lemma, we need to make some observations. Consider
a tree T ∈ T with at least two vertices (that is, T ∈ T \ {K1}). Select any vertex of
degree 1 and call it the special leaf ; the remaining k = d`(T) − 1 vertices of degree
1 will be called ordinary leaves. We say that T is a rooted at the special leaf. We

14DARRYN BRYANT, NEVENA FRANCETIĆ, PRZEMYS LAW GORDINOWICZ, DAVID PIKE, AND PAWE L PRA LAT

want to clean the tree T starting with m brushes occupying exactly m ordinary leaves
and, perhaps, some brushes placed at the special leaf. If no brush gets stuck at some
internal vertex and each leaf either starts or finishes one brush path, then we say that
an optimal cleaning can be achieved. In such a situation, k−m ordinary leaves finish
with exactly one brush and so the number of brushes that will end at the special leaf is

r(k,m) = m− (k −m) = 2m− k.
Note that r(k,m) could be negative. If this is the case, then one needs to start with
|2m−k| brushes at the special leaf to try to clean the tree optimally. Another observa-
tion is that when r(k,m) = 0, then no optimal cleaning is possible (at least one brush
has to start or finish at the special leaf). Our goal is to show that it is possible to start
with an initial distribution of brushes so that the process can be almost optimal.

Definition 6.4. Let (T, r), T ∈ T \{K1}, r ∈ V (T), deg(r) = 1, be a rooted tree with k
ordinary leaves. Let m be such that 0 ≤ m ≤ k. We say that the configuration c(k,m)
is δ-optimal (with respect to (T, r)) if there exists an initial configuration, consisting
of m brushes occupying m ordinary leaves and max{−(2m−k−δ), 0} brushes placed at
the special leaf, from which the tree T can be cleaned so that max{2m−k−δ, 0} brushes
end at the special leaf. In particular, we say that c(k,m) is optimal if it is 0-optimal.

As we already mentioned, there are some configurations that are not optimal (such
as when r(k,m) = 0). It turns out that there are also some configurations that are not
1-optimal. Figure 5 presents all non-isomorphic initial configurations of 3 brushes at
ordinary leaves showing that for this tree the configuration c(5, 3) is 2-optimal which
means that one brush at the special leaf is needed to clean the tree. The next lemma,
however, shows that every configuration is δ-optimal for some δ ∈ {0, 1, 2}.

r r r

Figure 5. The smallest configuration that is 2-optimal.

Lemma 6.5. Let (T, r), T ∈ T \ {K1}, r ∈ V (T) be a rooted tree with k ordinary
leaves. Let m be such that 0 ≤ m ≤ k. Then, the following hold.

(i) If m ∈ {0, k}, then the configuration c(k,m) is optimal.
(ii) If 0 < m < k and m 6= (k+ 1)/2, then the configuration c(k,m) is δ-optimal for

some δ ∈ {0, 1}.
(iii) If m = (k + 1)/2, then the configuration is δ-optimal for some δ ∈ {0, 2}.

Moreover, if δ = 2, then

BRUSHING WITHOUT CAPACITY RESTRICTIONS 15

(a) there exists m′, 0 < m′ < m, such that the configuration c(k,m′) is optimal.
(b) there exists m′′, m < m′′ < k, such that the configuration c(k,m′′) is opti-

mal.

Note that for T = K2 both possible configurations are optimal by (i) (while (iii)
holds with δ = 0).

One further observation which we need to make is that vertices of degree 2 in trees
do not affect the brush number.

Definition 6.6. Let T be a tree on n vertices, t of which have degree 2. The homeo-
morphic reduction of T is the tree T̂ = Tt where T0 = T and for each i ∈ {1, 2, . . . , t},
Ti is obtained from Ti−1 by contracting an edge that has an end-vertex of degree 2 in
Ti−1.

Note that T̂ has no vertices of degree 2 (because each contraction of an edge that
has an end-vertex of degree 2 reduces the number of vertices of degree 2 by 1), and

that T can be constructed from T̂ by performing a sequence of t edge sub-divisions.

Clearly d`(T) = d`(T̂). Moreover, it is readily observed that any cleaning strategy for

T corresponds to a cleaning strategy for T̂ , and vice-versa, and hence the validity of
the following lemma is apparent:

Lemma 6.7. If T is a tree then B(T) = B(T̂).

We will now show that the main theorem is an easy consequence of the foregoing
lemmata.

Proof of Theorem 6.2. It follows from Lemma 6.3 that it is enough to prove the theorem
for trees from the family T . In order to prove part (i), suppose that T ∈ T is any tree
with d`(T) vertices of degree 1 and that d`(T) is an odd number. Select any vertex of
degree 1 and call it the special leaf; hence the remaining vertices of degree 1 are the
ordinary leaves. We apply Lemma 6.5 with k = d`(T) − 1 (k even) and m = k/2 to
get that c(k,m) is 1-optimal. This implies that there exists an initial configuration of
brushes consisting of m brushes placed on m ordinary leaves and 1 brush placed on the
special leaf. It follows that B(T) ≤ m + 1 = dd`(T)/2e and, since a lower bound is
obvious, this finishes the proof of part (i).

Part (ii) could be proved using Lemma 6.5 one more time but, in fact, it follows easily
from part (i). Suppose that T ∈ T is any tree for which d`(T) is an even number. If
T = K2 it is apparent that the result holds. So we now assume that T 6= K2 and note
that each internal vertex of T has degree 3. Select any vertex v of degree 1 and observe

that the tree T ′ = T \ v has d`(T) − 1 vertices of degree 1, as does T̂ ′ (which is in T
even if T ′ is not). Since d`(T)− 1 is odd, it follows from Lemma 6.7 and part (i) that

B(T \ v) = B(T̂ ′) =

⌈
d`(T)− 1

2

⌉
=
d`(T)

2
,

and so T \ v can be cleaned with d`(T)/2 brushes. One can put an additional brush on
the vertex v to clean T and so B(T) ≤ d`(T)/2 + 1. The proof is finished, since a lower
bound of d`(T)/2 is obvious. �

All that remains is to prove Lemma 6.3 and Lemma 6.5.

16DARRYN BRYANT, NEVENA FRANCETIĆ, PRZEMYS LAW GORDINOWICZ, DAVID PIKE, AND PAWE L PRA LAT

6.1. Proof of Lemma 6.3. Given a tree T , we show how to construct a tree T ∗ such

that d`(T) = d`(T
∗), T ∗ ∈ T , and T̂ is a graph minor of T ∗.

Definition 6.8. Given a tree T , we associate with its homeomorphic reduction T̂ a tree
T ∗ on

∑
v∈V (T̂) f(v) vertices where

f(v) =

{
1 if degT̂ (v) ∈ {1, 3}
degT̂ (v)− 2 otherwise.

Each vertex v of T̂ gives rise to a path (v1, v2, . . . , vf(v)) of order f(v) in T ∗. If uv ∈
E(T̂) then in T ∗ there will exist a single edge of the form uivj for one i (1 ≤ i ≤ f(u))
and one j (1 ≤ j ≤ f(v)). The degT̂ (v) edges of this type that arise from the edges

incident with v in T̂ will be distributed among v1, v2, . . . , vf(v) so that if degT̂ (v) ≥ 4
then v1 and vf(v) are each incident with two such edges and each of v2, . . . , vf(v)−1 are
incident with one such edge, whereas if degT̂ (v) ≤ 3 then all degT̂ (v) of these edges will
be incident with v1 in T ∗.

v

w

T

v

w

T

v v2 3v1

w

w1

2

T*

Figure 6. T , T̂ and T ∗.

An example of a tree T , its homeomorphic reduction T̂ and an associated tree T ∗ are
illustrated in Figure 6. Note that different choices of distributions of edges of the form
uivj may result in several non-isomorphic choices for T ∗. However, for our purposes,
any one of them will suffice.

It is apparent that d`(T) = d`(T̂) = d`(T
∗).

Since B(T) = B(T̂), to show that B(T) ≤ B(T ∗) it suffices to show that any clean-

ing strategy for T ∗ can be used to establish a cleaning strategy for T̂ with the same
number of brushes. Equivalently, we show that an oriented path covering of T ∗ with

B(T ∗) directed paths can be used to obtain an oriented path covering of T̂ with B(T ∗)
paths. Doing so is straightforward: when a path of the covering of T ∗ uses vertices

vi1 , vi2 , . . . , vim which arose from vertex v of T̂ , it uses them consecutively within the
path and so this portion of the path in T ∗ can be contracted into a single vertex, which

would be the vertex v of T̂ . Performing all possible similar contractions results in each

directed path of the covering in T ∗ becoming a directed path in a covering of T̂ .

BRUSHING WITHOUT CAPACITY RESTRICTIONS 17

6.2. Proof of Lemma 6.5. Let (T, r), T ∈ T \ {K1}, r ∈ V (T), deg(r) = 1, be a
rooted tree with k ordinary leaves (k ≥ 1). Note that if m = k, then the tree T can be
easily cleaned once every single ordinary leaf starts with one brush. Indeed, partition
vertices of T with respect to their distance from the special leaf. After cleaning vertices
‘layer by layer’ (starting from the set of vertices that is as far from the special leaf as
possible), the special leaf receives k brushes and so the configuration c(k, k) is optimal.
It follows from the Reversibility Theorem (Theorem 3.1) that the final configuration
can be reused so that every ordinary leaf receives exactly one brush. This proves that
r(k, 0) is also optimal and part (i) is finished.

In order to prove parts (ii) and (iii), we will use induction on k, the number of
ordinary leaves of T . There is only one graph with k = 1 to investigate, and it is
easy to check that this graph satisfies the desired properties (note that (iii) holds with
δ = 0). Suppose then that the properties (ii) and (iii) hold for all trees with the
number of ordinary leaves smaller than some value k and our goal is to show that
they hold for a given rooted tree (T, r) with k ordinary leaves. The special leaf r is
adjacent to an internal vertex v that is the special leaf of two subtrees T1 and T2 with
k1 and k2 ordinary leaves, respectively. We may assume that 1 ≤ k1 ≤ k2 < k and
the inductive hypothesis can be applied to both subtrees. The general strategy will
be to start with some configuration of brushes, clean T1 as best as possible (using the
inductive hypothesis) which results with some number of brushes arriving at v. As
before, any negative value that might follow from the calculations implies that there is
a deficit on v and so we need to send some brushes from v to T1. On the other hand,
a positive value implies that some brushes arrive at v after T1 is cleaned, and these
brushes can be reused to clean the remaining part of the graph. The main problem
is to avoid obtaining zero, since this means that all brushes coming from T1 are to be
sent to T2 but an extra brush needs to be introduced to clean an edge between v and
r, the special leaf of T . We will continue using this notation until the end of this proof.
There are a few cases to consider.

Case 1. 0 < m ≤ k1 − 1 and m 6= (k1 + 1)/2. Since c(k1,m) is δ-optimal for some
δ ∈ {0, 1}, we can start with m brushes distributed on the ordinary leaves of T1, clean
T1, and arrive with 2m− k1 − δ brushes at v. Since k2 brushes need to be sent to T2,

r(k,m) = (2m− k1 − δ)− k2 = 2m− k − δ
brushes will arrive at the special leaf of T , provided that r(k,m) 6= 0. Since m ≤
k1 − 1 ≤ k/2− 1, we have

r(k,m) ≤ 2(k/2− 1)− k − δ ≤ −2 < 0,

so no additional brush has to be introduced. The configuration c(k,m) is δ-optimal.

Case 2. 0 < m = (k1 + 1)/2 ≤ k1 − 1. Note that in this case 3 ≤ k1 ≤ k2. It follows
from the inductive hypothesis (part (iii)) that the configuration c(k1,m) is δ1-optimal
for some δ1 ∈ {0, 2}. If δ1 = 0, then we can distribute brushes on T1 only, clean it, and
push k2 brushes to T2 as before. Even if r(k,m) = 0, one additional brush can be added
to get that c(k,m) is δ-optimal for some δ ∈ {0, 1}. The proof for the δ1 = 2 case is
slightly more complicated. It follows from the inductive hypothesis (part (iii a)) that

18DARRYN BRYANT, NEVENA FRANCETIĆ, PRZEMYS LAW GORDINOWICZ, DAVID PIKE, AND PAWE L PRA LAT

there exists m′, 0 < m′ < m, such that the configuration c(k1,m
′) is optimal. We can

start with m′ brushes distributed on T1 and clean T1 optimally. The remaining m−m′
brushes must be distributed on T2. Since m −m′ < m = (k1 + 1)/2 ≤ (k2 + 1)/2, the
configuration c(k2,m − m′) is δ2 optimal for some δ2 ∈ {0, 1}. Hence, the number of
brushes arriving at the special leaf of T is

r(k,m) = (2m′ − k1) + (2(m−m′)− k2 − δ2) = 2m− k − δ2,

as we wish, provided r(k,m) 6= 0. On the other hand,

r(k,m) = 2m− k − δ2 ≤ (k1 + 1)− k = 1− k2 ≤ −2 < 0.

No brush needs to be added and so c(k,m) is δ2-optimal.

Case 3. m = k1. This case is easy. We put one brush on every ordinary leaf of T1 and
send them all through vertex v to T2, introducing some brushes on the special leaf of
T1, if needed. If k1 6= k2, then c(k,m) is optimal (r(k,m) = k1 − k2 = 2m − k 6= 0);
otherwise, one additional brush is added to clean the graph and so c(k,m) is 1-optimal
(r(k,m) = k1 − k2 − 1 = 2m− k − 1).

Case 4. k1 + 1 ≤ m < k, m 6= (k + 1)/2, and m − k1 6= (k2 + 1)/2. We start with
k1 brushes distributed on the ordinary leaves of T1 and m − k1 brushes on T2. Since
m − k1 6= (k2 + 1)/2, the configuration c(k2,m − k1) is δ-optimal for some δ ∈ {0, 1}.
The number of brushes arriving at v is equal to

k1 + (2(m− k1)− k2 − δ) = 2m− k − δ 6= 1− δ,

since m 6= (k + 1)/2. This implies that no extra brush needs to be introduced if δ = 1.
For δ = 0, it might be the case that one brush has to be added but this causes no
problem. We get that the configuration c(k,m) is either optimal or 1-optimal.

Case 5. k1 + 1 ≤ m = (k + 1)/2 < k. As before, we start with k1 brushes distributed
on the ordinary leaves of T1 and m− k1 brushes on T2. Since

m− k1 =
k + 1

2
− k1 =

k2 + 1− k1
2

6= k2 + 1

2
,

the configuration c(k2,m−k1) is δ-optimal for some δ ∈ {0, 1}. If δ = 0, then 2m−k = 1
brush arrives at vertex v and it can be pushed to the special leaf of T . The configuration
c(k,m) is therefore optimal. If δ = 1, then one additional brush has to be added to get
that c(k,m) is 2-optimal (which is allowed in this case). It remains to show that there
exist m′,m′′ such that 0 < m′ < m < m′′ < k and the corresponding configurations are
optimal.

Since m ≥ k1 + 1, we put m′ = k1 < m to get the first desired optimal configuration
c(k,m′) starting with brushes occupying all ordinary leaves of T1. On the other hand,
we can take m′′ = k2. Indeed, since (k+ 1)/2 ≤ k2 + (1/2), we have that m < k2 = m′′.
Then one can start with brushes occupying all ordinary leaves of T2 to get an optimal
configuration c(k,m′′), either as the original cleaning sequence if m = k2 or as the
second desired cleaning sequence with m < m′′.

BRUSHING WITHOUT CAPACITY RESTRICTIONS 19

Case 6. m−k1 = (k2+1)/2. First note that m = k1+(k2+1)/2 > (k+1)/2 and so our
task is to show that the corresponding configuration is optimal or 1-optimal. It follows
from the inductive hypothesis that c(k2,m − k1) is δ2-optimal for some δ2 ∈ {0, 2}. If
δ2 = 0, then

r(k,m) = k1 + (2(m− k1)− k2) = k1 + 1 ≥ 2

brushes arrive at v and can be sent to the special leaf of T . The configuration c(k,m)
is optimal.

The δ2 = 2 case is more complicated. We need to consider two sub-cases. Suppose
first that k2 ≥ m. Since c(k2,m) is δ-optimal for some δ ∈ {0, 1}, we can start with m
brushes on T2 to get

r(k,m) = (2m− k2 − δ)− k1 = k1 + 1− δ ≥ 1.

The configuration c(k,m) is δ-optimal as well. Suppose now that k2 < m. We might
want to start with k2 brushes on T2 and m−k2 brushes on T1. If c(k1,m−k2) is δ-optimal
for some δ ∈ {0, 1}, then the configuration c(k,m) is δ-optimal as well. However, it
might happen that c(k1,m−k2) is 2-optimal. But this implies that m−k2 = (k1+1)/2;
that is k1 = k2. In such case we need to use part (iii b) to deduce that there exists m′′

such that m− k2 < m′′ < k1 and that c(k1,m
′′) is optimal. We start with m′′ brushes

on T1 and m−m′′ on T2 (note that m−m′′ < k2 so this is feasible). Since m′′ < k1, we
have m−m′′ > m− k1 = (k2 + 1)/2 and the configuration c(k2,m−m′′) is δ-optimal
for some δ ∈ {0, 1}. As before r(k,m) = k1 + 1 − δ ≥ 1 which implies that c(k,m) is
δ-optimal, which concludes the proof of Lemma 6.5.

7. Concluding remarks

Having established in Section 6 that trees with an even number of vertices of degree 1
can be partitioned into two sets depending on whether the brush number equals d`(T)/2
or exceeds it by 1, it is natural to ask for a characterisation of trees that belong to one
of these two sets. We are also curious about the decision problem: Given a tree T for
which d`(T) is even, is B(T) = d`(T)/2? We leave it as an open question to determine
the computational complexity of this problem.

References

[1] N. Alon, P. Pra lat, and N. Wormald, Cleaning regular graphs with brushes, SIAM Journal on
Discrete Mathematics 23 (2008), 233–250.

[2] A. Bjorner, L. Lovasz, and P.W. Shor, Chip-firing games on graphs, European J. Combin., 12
(1991), 283–291.

[3] K. Efe and G.-L. Feng, A Proof for Bisection Width of Grids, World Academy of Science, Engi-
neering and Technology 27 (2007), 172–177.

[4] S. Gaspers, M.-E. Messinger, R.J. Nowakowski, and P. Pra lat, Clean the graph before you draw
it!, Information Processing Letters 109 (2009), 463–467.

[5] S. Gaspers, M.-E. Messinger, R.J. Nowakowski, and P. Pra lat, Parallel cleaning of a network with
brushes, Discrete Applied Mathematics 158 (2009) 467–478.

[6] P. Gordinowicz, R. Nowakowski, and P. Pra lat, polish—Let us play the cleaning game, Theoretical
Computer Science 463 (2012), 123–132.

[7] F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes,
Morgan Kaufmann, 1992.

20DARRYN BRYANT, NEVENA FRANCETIĆ, PRZEMYS LAW GORDINOWICZ, DAVID PIKE, AND PAWE L PRA LAT

[8] D. Lokshtanov, N. Misra, and S. Saurabh, Imbalance is Fixed Parameter Tractable, preprint.
[9] S.G. McKeil, Graph Cleaning, MSc Thesis, Dalhousie University, 2007.

[10] M.-E. Messinger, R.J. Nowakowski, and P. Pra lat, Cleaning a network with brushes, Theoretical
Computer Science 399 (2008), 191–205.

[11] M.-E. Messinger, R.J. Nowakowski, and P. Pra lat, Cleaning with Brooms, Graphs and Combina-
torics 27 (2011), 251–267.

[12] M.E. Messinger, R.J. Nowakowski, and P. Pra lat, Elimination schemes and lattices, preprint.
[13] M.-E. Messinger, R.J. Nowakowski, P. Pra lat, and N. Wormald, Cleaning random d–regular graphs

with brushes using a degree-greedy algorithm, Proceedings of the 4th Workshop on Combinatorial
and Algorithmic Aspects of Networking (CAAN 2007), Lecture Notes in Computer Science 4852,
Springer, 2007, 13–26.

[14] K. Nakano, Linear layout of generalized hypercubes, International Journal of Foundations of
Computer Science 14 (2003), 137–156.

[15] C.H. Papadimitrou and M. Sideri, The Bisection Width of Grid Graphs, Theory of Computing
Systems 29 (1996), 97–110.

[16] P. Pra lat, Cleaning random d–regular graphs with Brooms, Graphs and Combinatorics 27 (2011),
567–584.

[17] P. Pra lat, Cleaning random graphs with brushes, Australasian Journal of Combinatorics 43
(2009), 237–251.

The University of Queensland, Department of Mathematics, QLD 4072, Australia
E-mail address: db@maths.uq.edu.au

School of Mathematics & Statistics, Carleton University, Ottawa, ON, Canada
E-mail address: nfrancet@uottawa.ca

Institute of Mathematics, Technical University of Lodz, Lódź, Poland
E-mail address: pgordin@p.lodz.pl

Department of Mathematics and Statistics, Memorial University of Newfoundland,
St. John’s, NL, Canada

E-mail address: dapike@mun.ca

Department of Mathematics, Ryerson University, Toronto, ON, Canada
E-mail address: pralat@ryerson.ca

