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Abstract. The metric dimension of a graph G is the minimum number of vertices in
a subset S of the vertex set of G such that all other vertices are uniquely determined by
their distances to the vertices in S. In this paper we investigate the metric dimension
of the random graph G(n, p) for a wide range of probabilities p = p(n).

1. Introduction

Let G = (V,E) be a finite, simple, connected graph with |V | = n vertices. For a
subset R ⊆ V with |R| = r, and a vertex v ∈ V , define dR(v) to be the r-dimensional
vector whose i-th coordinate (dR(v))i is the length of the shortest path between v and
the i-th vertex of R. We call a set R ⊆ V a resolving set if for any pair of vertices
v, w ∈ V , dR(v) 6= dR(w). Clearly, the entire vertex set V is always a resolving set,
and so is R = V \ {z} for every vertex z. The metric dimension β(G) (or simply β,
if the graph we consider is clear from the context) is then the smallest cardinality of a
resolving set. We have the trivial inequalities 1 ≤ β(G) ≤ n− 1, with the lower bound
attained for a path, and the upper bound for the complete graph.

The problem of studying the metric dimension was proposed in the mid-1970s by
Slater [21], and Harary and Melter [13]. As a start, Slater [21] determined the metric
dimension of trees. Two decades later, Khuller, Raghavachari and Rosenfeld [19] gave
a linear-time algorithm for computing the metric dimension of a tree, and characterized
the graphs with metric dimensions 1 and 2. Later on, Chartrand, Eroh, Johnson
and Oellermann [8] gave necessary and sufficient conditions for a graph G to satisfy
β(G) = n− 1 or β(G) = n− 2.

Denoting by D = D(G) the diameter of a graph G, it was observed in [19] that
n ≤ Dβ−1 + β. Recently, Hernando, Mora, Pelayo, Seara and Wood [16] proved that

n ≤ (b2D
3
c+ 1)β +β

∑dD/3e
i=1 (2i−1)β−1, and gave extremal constructions that show that

this bound was sharp. Moreover, in [16] graphs of metric dimension β and diameter D
were characterized.

The metric dimension of the cartesian product of graphs was investigated by Cáceres,
Hernando et al. [7], and the relationship between β(G) and the determination number
of G (the smallest size of a set S such that every automorphism of G is uniquely
determined by its action on S) was studied by Cáceres, Garijo et al. [6]. Also, Bailey
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and Cameron [2] studied the metric dimension of groups, and the relationship of the
problem of determining β(G) to the graph isomorphism problem.

Concerning algorithms, the problem of finding the metric dimension is known to
be NP-complete for general graphs (see [12, 19]). Recently, Dı́az et al. [9] showed
that determining β(G) is NP-complete for planar graphs, and gave a polynomial-time
algorithm for determining the metric dimension of an outerplanar graph. Furthermore,
in [19] a polynomial-time algorithm approximating β(G) within a factor 2 log n was
given. On the other hand, Beerliova et al. [3] showed that the problem is inapproximable
within o(log n) unless P=NP. Hauptmann et al. [15] then strengthened the result and
showed that unless NP ⊆ DTIME(nlog logn), for any ε > 0, there is no (1 − ε) log n-
approximation for determining β(G), and finally Hartung et al. [14] extended the result
by proving that the metric dimension problem is still inapproximable within a factor
of o(log n) on graphs with maximum degree three.

In this paper, we consider the metric dimension of the classical binomial random
graph G(n, p). As usual (see, for example, [4, 18]), the space G(n, p) of random graphs
is the probability triple (Ω,F ,P) where Ω is the set of all graphs with vertex set [n] =
{1, 2, . . . , n}, F is the family of all subsets of Ω, and P is the probability measure on
(Ω,F) defined by

P(G) = p|E(G)|(1− p)(
n
2)−|E(G)| .

A random graph G(n, p) is simply a random point of this space. Clearly, G(n, p) can
be obtained by

(
n
2

)
independent coin flips, one for each unordered pair of vertices, with

probability of ‘success’ p: if the flip corresponding to a pair (x, y) is ‘success’, then we
join x to y, otherwise we do not join them. We shall take p = p(n) to be a function of
n; in particular, p may tend to zero as n tends to infinity. All asymptotics throughout
are as n→∞. We say that an assertion concerning G(n, p) holds asymptotically almost
surely (a.a.s.) if the probability that it holds tends to 1 as n goes to infinity.

As far as we know, not much is known about the metric dimension of G(n, p). Babai
et al. [1] showed that in G(n, 1/2) a.a.s. the set of d(3 log n)/ log 2e vertices with the
highest degrees can be used to test whether two random graphs are isomorphic (in fact,
they provided an O(n2) algorithm to do it), and hence they obtained an upper bound
of d(3 log n)/ log 2e for the metric dimension of G(n, 1/2) that holds a.a.s. Frieze et
al. [11] studied sets resembling resolving sets, namely identifying codes : a set C ⊆ V is
an identifying code of G, if C is a dominating set (every vertex v ∈ V \ C has at least
one neighbour in C) and C is also a separating set (for all pairs u, v ∈ V , one must have
N [u]∩C 6= N [v]∩C, where N [u] denotes the closed neighbourhood of u). Observe that
a graph might not have an identifying code, but note also that for random graphs with
diameter 2 the concepts are very similar. The existence of identifying codes and bounds
on their sizes in G(n, p) were established in [11]. The same problem in the model of
random geometric graphs was analyzed by Müller and Sereni [20], and Foucaud and
Perarnau [10] studied the same problem in random d-regular graphs.

Let us collect our results into a single theorem covering all random graphs with
expected average degree d = pn(1 + o(1)) � log5 n and expected average degree in
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the complement of the graph (n − 1 − d) = (1 − p)n(1 + o(1)) ≥ (3n log log n)/ log n.
In later sections we shall prove slightly stronger results for specific ranges of p. For
a visualization of the behaviour of logn β(G(n, nx−1)) see also Figure 1(a) and the
description right after the statement of the theorem.

The intuition behind the theorem is the following: if a random graph is sufficiently
dense, then the graph locally (that is, “observed” from a given vertex) “looks” the
same. In other words, the cardinality of the set of vertices at a certain graph distance
from a given vertex v does not differ much for various v. After grouping the vertices
according to their graph distances from v, it turns out that for the metric dimension
the ratio between the sizes of the two largest groups of vertices is of crucial importance.
If these two groups are roughly of the same size, then a typical vertex added to the
resolving set distinguishes a lot of pairs of vertices, and hence the metric dimension is
small. If, on the other hand, these two groups are very different in size, a typical vertex
distinguishes those few vertices belonging to the second largest group from the rest.
The number of other pairs that are distinguished is negligible and hence the metric
dimension is large.

It is clear that this parameter is non-monotonic. Let us start with a random graph
with constant edge probability p. For each vertex v in the graph, a constant fraction of
all vertices are neighbours of v and a constant fraction of vertices are non-neighbours.
When decreasing p, the number of neighbours decreases, and some vertices will appear
at graph distance 3. As a result, the metric dimension increases. Continuing this
process, the number of vertices at graph distance 3 increases more and more, and at
some point this number is comparable to the number of vertices at graph distance 2.
Then, the metric dimension is small again, and the same phenomenon appears in the
next iterations.

The precise statement is the following.

Theorem 1.1. Suppose that

log5 n� d = p(n− 1) ≤ n

(
1− 3 log log n

log n

)
.

Let i ≥ 0 be the largest integer such that di = o(n), let c = c(n) = di+1/n, and let

q =

{
(e−c)2 + (1− e−c)2 if p = o(1)

p2 + (1− p)2 if p = Θ(1).

For i ≥ 1, let η = logn d
i. Finally, let G = (V,E) ∈ G(n, p). Then, the following

assertions hold a.a.s.

(i) If c = Θ(1), then

β(G) = (1 + o(1))
2 log n

log(1/q)
= Θ(log n).

(ii) If c→∞ and ec ≤ (log n)/(3 log log n), then

β(G) = (1 + o(1))
2 log n

log(1/q)
= (1 + o(1))ec log n� log n.
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(iii) If ec > (log n)/(3 log log n), then

(η + o(1))

(
di

n
+ e−c

)−1
(log n) ≤ β(G) ≤ (1 + o(1))

(
di

n
+ e−c

)−1
(log n).

In particular,

β(G) =

{
Θ(ec log n) = Θ( logn

log(1/q)
) if e−c = Ω(di/n)

Θ(n logn
di

) if e−c � di/n,

and hence in all cases we have β(G)� log n.

Remark 1.2. Note that here and in the following results, it follows from the definition
of i that c = di+1/n = Ω(1). Furthermore,

η = logn d
i ≥ i

i+ 1
+ o(1) ≥ 1

2
+ o(1),

where the first inequality follows from the fact that

logn d
i =

log di

log n
=

log di

log(di+1/c)
=

i log d

(i+ 1) log d− log c
≥ i

i+ 1
+ o(1).

Observe that Theorem 1.1 shows that β(G) undergoes a “zigzag” behaviour as a
function of p. It follows that a.a.s. logn β(G(n, nx−1)) is asymptotic to the function
f(x) = 1−xb1/xc shown in Figure 1(a). Indeed, for cases (i) and (ii) we have c = no(1)

(that is, d = n(1+o(1))/i for some i ∈ N) and a.a.s. β(G) = no(1). This corresponds
to a collection of points (1/i, 0), i ∈ N in the figure. For ranges of p considered in

case (iii), we have that a.a.s. β(G) is of order (di/n+ e−c)
−1

. For d = nx+o(1), where
1/(i + 1) < x < 1/i for some i ∈ N, it follows that a.a.s. β(G) = Θ(n/di) = n1−ix+o(1),
which corresponds to linear parts of the function f(x) of slope 1 − ix. The function
f(x) is hence not continuous at x = i, i ∈ N \ {1}.

The result is asymptotically tight for sparse graphs (that is, for d = no(1)). The ratio
between our upper and lower bound is at most 2 + o(1) and follows another “zigzag”
function f(x) = (xb1/xc)−1 shown in Figure 1(b). Indeed, for cases (i) and (ii) we
obtained an asymptotic behaviour of β(G). This corresponds to a collection of points
(1/i, 0), i ∈ N in the figure. In case (iii) the ratio is asymptotic to η−1. For d = nx+o(1),
where 1/(i + 1) < x < 1/i for some i ∈ N, η−1 = η−1(x) ∼ 1/(ix) ≤ (i + 1)/i. Hence,
η−1 ∼ (xb1/xc)−1.

2. Expansion properties

Let us start with the following expansion-type properties of random graphs. For a
vertex v ∈ V , let S(v, i) and N(v, i) denote the set of vertices at distance i from v
and the set of vertices at distance at most i from v, respectively. For any V ′ ⊆ V , let
S(V ′, i) =

⋃
v∈V ′ S(v, i) and N(V ′, i) =

⋃
v∈V ′ N(v, i).

Lemma 2.1. Let ω = ω(n) be a function tending to infinity with n such that ω ≤
(log n)4(log log n)2. Then the following properties hold a.a.s. for G(n, p).
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(a) the ‘zigzag’ function (b) the upper/lower bound ratio
f(x) = 1− xb1/xc η−1(x) = (xb1/xc)−1

Figure 1

(i) Suppose that ω log n ≤ d = p(n − 1) = o(n). Let V ′ ⊆ V with |V ′| ≤ 2 and let
i ∈ N such that di = o(n). Then,

|S(V ′, i)| =
(

1 +O

(
1√
ω

)
+O

(
di

n

))
di|V ′|.

In particular, for every x, y ∈ V (x 6= y) we have

|S(x, i) \ S(y, i)| =
(

1 +O

(
1√
ω

)
+O

(
di

n

))
di.

(ii) Suppose that (ω log2 n)/(log log n) ≤ d = p(n − 1) = o((n log log n)/(log n)2).
Let R ⊆ V with r = |R| ≤ (log n)2/(log log n), x ∈ V \ R, and let i ∈ N such
that rdi = o(n). Then,

|S(x, i) \N(R, i)| =

(
1 +O

(√
log log n

ω log n

)
+O

(
1

ω

)
+O

(
rdi

n

))
di.

Proof. For (i), we will show that a.a.s. for every V ′ ⊆ V with |V ′| ≤ 2 and i ∈ N we
have the desired concentration for |S(V ′, i)|, provided that di = o(n). The statement
for any pair of vertices x, y will follow immediately (deterministically) from this.

In order to investigate the expansion property of neighbourhoods, let Z ⊆ V , z = |Z|,
and consider the random variable X = X(Z) = |N(Z, 1)|. We will bound X in a
stochastic sense. There are two things that need to be estimated: the expected value
of X, and the concentration of X around its expectation.
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Since for x = o(1) we have (1− x)z = e−xz(1+O(x)) and also e−x = 1− x+O(x2), it is
clear that

E[X] = n−
(

1− d

n− 1

)z
(n− z)

= n− exp

(
−dz
n

(1 +O(d/n))

)
(n− z)

= dz(1 +O(dz/n)), (1)

provided dz = o(n). We next use a consequence of Chernoff’s bound (see e.g. [18, p.
27, Corollary 2.3]), that

P(|X − E[X]| ≥ εE[X])) ≤ 2 exp

(
−ε

2E[X]

3

)
(2)

for 0 < ε < 3/2.
This implies that, for ε = 2/

√
ω, the expected number of sets V ′ satisfying∣∣|N(V ′, 1)| − E[|N(V ′, 1)|]

∣∣ > εd|V ′|
and |V ′| ≤ 2 is at most∑

z∈{1,2}

2nz exp

(
− ε2zd

3 + o(1)

)
≤
∑

z∈{1,2}

2nz exp

(
−ε

2zω log n

3 + o(1)

)
= o(1),

since d ≥ ω log n. Hence the statement holds for i = 1 a.a.s. Now, we will estimate the
cardinalities of N(V ′, i) up to the i’th iterated neighbourhood, provided di = o(n) and
thus i = O(log n/ log log n). It follows from (1) and (2) (with ε = 4(ω|Z|)−1/2) that in
the case ω log n/2 ≤ |Z| = o(n/d) with probability at least 1− n−3

|N(Z, 1)| = d|Z|
(
1 +O (d|Z|/n) +O

(
(ω|Z|)−1/2

))
,

where the bounds in O() are uniform. As we want a result that holds a.a.s., we may
assume this statement holds deterministically, since there are only O(n2 log n) choices
for V ′ and i. Given this assumption, we have good bounds on the ratios of the cardi-
nalities of N(V ′, 1), N(N(V ′, 1), 1) = N(V ′, 2), and so on. Since i = O(log n/ log log n)
and
√
ω ≤ (log n)2(log log n), the cumulative multiplicative error term is

(1+O(d/n) +O(1/
√
ω))

i∏
j=2

(
1 +O

(
dj/n

)
+O

(
ω−1/2d−(j−1)/2

))
= (1 +O(1/

√
ω) +O(di/n))

i−3∏
j=7

(
1 +O

(
log−3 n

))
= (1 +O(1/

√
ω) +O(di/n)),

and the proof of part (i) is complete.

Now, let us move to part (ii). Exactly the same strategy as for part (i) is used here
and so we only outline the proof by pointing out the differences. Every time the i’th
neighbourhood of x is about to be estimated, we first expose the neighbourhood of R.
Since for each vertex v, a.a.s. |N(v)| = d(1+o(1)), during this process, only |N(R, i)| =
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O(rdi) vertices are discovered. Now, the neighbourhood N(x, i − 1) is expanded, but
this time the vertices of N(R, i) need to be excluded from the consideration. However,
the expected size of S(x, i) \N(R, i) is affected by a factor of (1 +O(rdi/n)) only, and
so this causes no problem (since the very same error term comes from (1)). As before,
the largest error term for the expectation appears for the largest possible value of i.
The concentration follows from (2), and thus (again, exactly as before) the error term
in the concentration result is the largest for i = 1. Using that r ≤ (log2 n)/(log log n),
the expected number of pairs (x,R) for which the statement fails for i = 1 is, by
applying (2) with ε = 2/

√
ω′, at most

n
log2 n

log logn
+1 exp

(
− ε2d

3 + o(1)

)
≤ exp

(
(1 + o(1) log3 n

log log n
− ε2d

3 + o(1)

)
= o(1), (3)

provided d ≥ (ω′ log3 n)/(log log n) for some function ω′ tending to infinity with n.
(Note that the condition for d here is slightly stronger than the one we want to have.)
Hence, by Markov’s inequality, a.a.s. we are guaranteed to have an error term of (1 +
O(1/

√
ω′) +O(rdi/n)) for any pair (x,R). Therefore, it follows from the fact that ω ≤

(log n)4(log log n)2 that the error term O(
√

log log n/(ω log n)) is of order at least 1/
√
ω′

if ω′ ≥ (log n)10(log log n)2. The proof of part (ii) is finished for d ≥ (log13 n)(log log n).
Next, we shall concentrate on (ω log2 n)/(log log n) ≤ d = no(1) and shall obtain a

slightly better error term for the case i = 1. It is well known (and can be easily shown
using Markov’s inequality) that a.a.s. there is no K2,3 in G. Conditioning on this we
get from part (i) that

|S(x, 1) \N(R, 1)| =

(
1 +O

(√
log log n

ω log n

)
+O

(
|R|
d

))
d,

and the result holds for i = 1, since |R|/d ≤ ω−1. As before, the error term is maximal
for i = 1: indeed, for i ≥ 2 we already showed that the expectation of |S(x, i)\N(R, i)|
can be estimated in the same way as the expectation of |S(x, i)|, since its size is not
affected by disregarding N(R, i). In particular, for i = 2 we have the expected size of
S(x, 2) \N(R, 2) to be equal to(

1 +O

(
rd2

n

))
d |S(x, 1) \N(R, 1)| = (1 + o(1))d2.

The expected number of pairs (x,R) for which the statement fails for i = 2 is, by
applying (2) with ε = 1/ω, at most

n
log2 n

log logn
+1 exp

(
− ε2d2

3 + o(1)

)
≤ exp

(
(1 + o(1)) log3 n

log log n
− log4 n

(3 + o(1))(log log n)2

)
= o(1), (4)

and by Markov’s inequality we are guaranteed an error term of (1+O(1/ω)+O(rd2/n))
for any pair (x,R) and i = 2. By the same argument as in part (i), the cumulative
multiplicative error term is a product of the error term for i = 1 (from the concentration)
and the last i (from the expectation), and the proof of part (ii) is complete. �
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3. Upper bound

In this section, we shall prove an upper bound for the metric dimension, coming from
an application of the probabilistic method.

Theorem 3.1. Suppose that d = p(n − 1) � log3 n and n − d � log n. Let i ≥ 0 be
the largest integer such that di = o(n), let c = c(n) = di+1/n, and let

q =

{
(e−c)2 + (1− e−c)2 if p = o(1)

p2 + (1− p)2 if p = Θ(1).

Finally, let G = (V,E) ∈ G(n, p). Then, the following assertions hold a.a.s.

(i) If c = Θ(1), then

β(G) ≤ (1 + o(1))
2 log n

log(1/q)
= Θ(log n).

(ii) If c→∞, then

β(G) ≤ (1 + o(1))

(
di

n
+ e−c

)−1
(log n)� log n.

In particular,

β(G) ≤

{
(1 + o(1))ec log n = (1 + o(1)) 2 logn

log(1/q)
if e−c � di/n

(1 + o(1))n logn
di

if e−c � di/n.

Proof. Let us start with the following useful observation.
Claim: Suppose that a (deterministic) graph G = (V,E) on n vertices satisfies the

following property: for a given pair of vertices x, y ∈ V , the probability that a random
set W of cardinality w does not distinguish x and y is at most 1/n2. (For different
pairs of vertices, the set W = W (x, y) is generated independently.) Then, the metric
dimension is at most w.

Proof of the Claim: The claim clearly holds by the probabilistic argument. Indeed,
since the expected number of pairs that are not distinguished by a random set W is at
most 1/2, there is at least one set W that distinguishes all pairs.

Now, we are going to show that a.a.s. a random graph satisfies some expansion
property, and then we will show that any (deterministic) graph G with this property
must also satisfy the assumption of the claim (for some w to be determined soon),
and so must have β(G) ≤ w. The conclusion will be then that a.a.s. β(G) ≤ w for
G ∈ G(n, p).

Let ε > 0 be any constant (at the end, we will let ε → 0 slowly), and fix a pair of
vertices x, y ∈ V of G = (V,E) ∈ G(n, p). Suppose first that i = 0; that is, p = Θ(1).
Note that any vertex that is adjacent to x but not to y (or vice versa) distinguishes
this pair. We expect 2p(1− p)(n− 2) ≥ (2 + o(1))(ω log n) of such vertices and so a.a.s.
for every pair of two vertices we have

X :=
∣∣∣(S(x, 1) \N(y, 1)

)
∪
(
S(y, 1) \N(x, 1)

)∣∣∣ = (2 + o(1))p(1− p)n

by (2) (applied with ε = 3/
√
ω).
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Finally, consider any deterministic graph for which this property holds for all pairs
x and y. Let pw be the probability that a random set W of cardinality w does not
distinguish the pair under consideration. We get that

pw ≤
(
n−X
n

)(
n− 1−X
n− 1

)
· · ·
(
n− w + 1−X
n− w + 1

)
≤
(

1− X

n

)w
= qw(1+o(1)),

which is at most 1/n2 for w = (2+ε)(log n)/(log(1/q)). The claim implies that β(G) ≤
w, and the result follows for i = 0.

Suppose now that i ≥ 1; that is, p = o(1). As before, we are going to use the claim
to show the desired bound. However, this time the expansion property will be different.
Clearly, if there exists z ∈ V such that z ∈ S(x, j) \ S(y, j) for some j ∈ N, then z
distinguishes the pair. It follows from Lemma 2.1(i) that a.a.s. for every pair x, y we
have |S(x, i)\S(y, i)| = (1+o(1))di, and so, by symmetry, there are (2+o(1))di vertices
in the i’th neighbourhood of x or y that can distinguish this pair (this is the first type
of vertices which is able to distinguish x and y).

Now, let us focus on distinguishing vertices of the second type. Any vertex z at
distance i+1 from x but at distance at least i+2 from y, or vice versa, also distinguishes
x and y. Suppose first that c ≤ 0.51 log n which in turn implies that di/n = c/d =
o(log−2 n). By Lemma 2.1(i), since d � log3 n and hence ω � log2 n, and using as

before that for p = o(1), 1− p = e−p+O(p2), we expect

2(1− p)(1+o(log−1 n)+O(di/n))di
(

1− (1− p)(1+o(log−1 n)+O(di/n))di
)
n(1 + o(1))

= 2 exp
(
−(1 + o(log−1 n))c

) (
1− exp

(
−(1 + o(log−1 n))c

))
n(1 + o(1))

= 2e−c+o(1)(1− e−c+o(1))n
= (2 + o(1))e−c(1− e−c)n

vertices of this type. (This is the place where we need to control error terms by con-
centrating on graphs that are dense enough.) Since the expectation is Ω(n0.49), it
follows from Chernoff’s bound (2) that with probability 1 − o(n−2) the cardinality is
well concentrated around its expectation. On the other hand, if c > 0.51 log n, then the
contribution from this second group is bounded by (2 + o(1))e−cn ≤ 3n0.49. This can
be ignored since the contribution from the first group is at least (2 + o(1))di = Ω(

√
n).

We get that with probability 1− o(n−2) the number of vertices that can distinguish the
pair x and y is at least (2 + o(1)) (di + e−c(1− e−c)n). Hence, a random graph a.a.s.
has this expansion property for all pairs x, y.

Now, as before, we consider any deterministic graph with the mentioned expansion
property, and show that for a given pair x, y, the probability pw that a random set
of cardinality w (w will be determined soon) does not distinguish this pair is at most
1/n2. For c = Θ(1) we get that

pw ≤
(

1− (2 + o(1))

(
di

n
+ e−c(1− e−c)

))w
=
(
1− 2e−c(1− e−c)

)w(1+o(1))
= qw(1+o(1)),
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which is at most 1/n2 for w = (2 + ε) log n/ log(1/q). If c→∞, then

pw ≤ exp

(
−(2 + o(1))

(
di

n
+ e−c

)
w

)
≤ n−2

for w = (1 + ε)(di/n+ e−c)−1 log n. The desired bound is implied by the claim.
As we promised, we let ε to tend to zero (slowly) and the proof is complete. �

4. Lower bounds

In order to show lower bounds, we shall make use of the following well-known result
proved in [5, Theorem 6] for graphs with average degree d = p(n − 1) that tends to
infinity faster than log3 n. Moreover, in [4, Corollary 10.12] the condition was relaxed
and it is now required only that d� log n. Recall that D = D(G) is the diameter of a
graph G.

Lemma 4.1 ([4], Corollary 10.12). Suppose that d = p(n− 1)� log n and

di/n− 2 log n→∞ and di−1/n− 2 log n→ −∞.
Then the diameter of G(n, p) is equal to i a.a.s.

Let i ≥ 0 be the largest integer such that di = o(n), and let c = c(n) = di+1/n. Now,
we are ready to show that the upper bound for the metric dimension is asymptotically
tight if c ≤ log log n− log log log n− log 3 (see Theorem 4.2); otherwise, there is at most
a constant factor difference (see Theorems 4.3 and 4.4).

Theorem 4.2. Let ε = ε(n) = (3 log log n)/(log n) = o(1). Suppose that log5 n �
d = p(n − 1) ≤ n(1 − ε). Let i ≥ 0 be the largest integer such that di = o(n), let
c = c(n) = di+1/n, and let

q =

{
(e−c)2 + (1− e−c)2 if p = o(1)

p2 + (1− p)2 if p = Θ(1).

Suppose that ec ≤ ε−1 = (log n)/(3 log log n). Finally, let G = (V,E) ∈ G(n, p). Then,
a.a.s.

β(G) ≥ (1 + o(1))
2 log n

log(1/q)
.

Proof. Our goal is to show that a.a.s. there is no resolving set R of cardinality

r :=
(2− ε) log n

log(1/q)
≤ (1 + o(1))

log n

ε
≤ log2 n

log log n
.

The probability that a given set R of cardinality r forms a resolving set has to be
estimated from above. We will use Suen’s inequality that was introduced in [22] and
revised in [17], and then the result will follow after applying the union bound. First we
consider the case p = o(1) (that is, i ≥ 1); the differences in the case p = Θ(1) (that is,
i = 0) will be carefully discussed afterwards.

By Lemma 2.1(i) applied with ω � log4 n, a.a.s. for every v ∈ V , we have

|S(v, i)| = di(1 + o(log−2 n)).
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Hence, by repeatedly applying Lemma 2.1(i) for all vertices of R, it follows that a.a.s.
for all R ⊆ V with |R| = r we have

|N(R, i)| = O(dir) = O(cnr/d) = O(n log2 n/d) = o(n).

Moreover, by Lemma 2.1(ii), this time applied with ω � (log n)3(log log n), it also
follows that a.a.s. for all R and all v ∈ R we have

|S(v, i) \N(R \ {v}, i)| = di(1 + o(log−2 n)).

Hence, a.a.s. there is no set R without these expansion properties and so we may assume
below that they all hold.

Fix any R ⊆ V with |R| = r. Expose N(R, i) and let S = V \ N(R, i) be the set
of vertices at distance at least i + 1 from R (note that no edge within S and no edge
between S and S(R, i) is exposed yet). From the previous observation we assume that
|S| = (1 + o(1))n.

Let I = {(x, y) : x, y ∈ S, x 6= y}, and for any (x, y) ∈ I, let Ax,y be the event
(with the corresponding indicator random variable Ix,y) that dR(x) = dR(y). Let X =∑

(x,y)∈I Ix,y. Clearly, the probability that R is a resolving set is at most the probability

that X = 0. The associated dependency graph has I as its vertex set, and (x1, y1) ∼
(x2, y2) if and only if {x1, y1} ∩ {x2, y2} 6= ∅. It follows from Suen’s inequality that

P(X = 0) ≤ exp
(
−µ+ ∆e2δ

)
, (5)

where

µ =
∑

(x,y)∈I

P(Ax,y)

∆ =
∑

(x1,y1)∼(x2,y2)

E[Ix1,y1Ix2,y2 ]

δ = max
(x1,y1)∈I

∑
(x2,y2)∼(x1,y1)

P(Ax2,y2).

We will first estimate µ. For a given vector d ∈ {i+1, i+2}r, let Ri+1 = Ri+1(d) ⊆ R
be a set of vertices of R that we want to be at distance exactly i+1 from x and y (recall
that x, y /∈ N(R, i)); Ri+2 = Ri+2(d) := R \Ri+1. Since we want to have a lower bound
on the probability that x and y yield the same vector d, in order to avoid additional
complications, for every vertex v ∈ Ri+1 we can ignore possible edges between x, y and
a vertex in S(v, i)∩S(R \ {v}, i) and consider only the possible edges between x, y and
S(v, i) \ S(R \ {v}, i). Let px,y(d) be the probability that the distance from both x and
y to Ri+1 is i+ 1 and to Ri+2 is at least i+ 2. We have that

px,y(d) ≥

(1− p)|S(Ri+2,i)|
∏

v∈Ri+1

(
1− (1− p)|S(v,i)\S(R\{v},i)|

)2

≥ (1 + o(1))

(
exp

(
− c|Ri+2|(1 + o(log−2 n))

)(
1− exp

(
− c(1 + o(log−2 n))

)|Ri+1|
))2

= (1 + o(1))
(
e−c
)2|Ri+2| (1− e−c)2|Ri+1| ,
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since c|R| = O(log2 n). (This is the place where we need to control error terms by
concentrating on graphs that are dense enough.) Finally, it is straightforward to see
that a.a.s. both x and y are adjacent to at least one vertex of S(v, i+1) for every v ∈ R.
(Recall that it follows from Lemma 4.1 that the diameter of G is i + 2 a.a.s., and so
that there are only two possible distances that occur in dR(x) for any x ∈ S.) Hence,
P(dR(x) = dR(y) = d) = (1 + o(1))px,y(d).

Since there are
(
r
k

)
vectors with exactly k entries equal to (i+ 2),

µ =

(
n− o(n)

2

) r∑
k=0

(
r

k

)
(1 + o(1))

(
e−c
)2k (

1− e−c
)2(r−k)

= (1 + o(1))

(
n

2

)(
(e−c)2 + (1− e−c)2

)r
= (1 + o(1))

(
n

2

)
qr.

By the same calculations we have

∆ = (1 + o(1))3

(
n

3

)(
(e−c)3 + (1− e−c)3

)r
δ = (1 + o(1))2n

(
(e−c)2 + (1− e−c)2

)r
= (2 + o(1))nqr.

Now we are ready to apply Suen’s inequality (5). Since qr = n−2+ε and using that
1− x ≤ e−x, we get

log (P(X = 0)) ≤ −(1 + o(1))

(
n

2

)
qr
(

1− n
(

(e−c)3 + (1− e−c)3

(e−c)2 + (1− e−c)2

)r
eO(nqr)

)
= −(1 + o(1))

nε

2

(
1− n

(
1− (e−c)− (e−c)2

(e−c)2 + (1− e−c)2

)r
eO(nε−1)

)
≤ −n

ε

3

(
1− n

(
1− 1− q

2q

)r)
≤ −n

ε

3

(
1− n exp

(
−1− q

2q
· (2− ε) log n

log(1/q)

))
.

Note that the function f(q) := (q− 1)/(q log q) is decreasing in (0, 1) and tends to 1 as
q → 1. Since 1− q = 2e−c(1− e−c) ≥ (1 + o(1))2ε, or equivalently, q ≤ 1− (1 + o(1))2ε,
the minimum is attained at 1− q0 such that q0 = (2 + o(1))ε. Therefore, using the fact
that for −1 ≤ x < 1, log(1− x) = x+ x2/2 +O(x3), we have

1− q
2q
· 2− ε

log(1/q)
≥ q0

2(1− q0)
· 2− ε
q0(1 + q0/2 +O(q20))

= 1 +

(
1

2
+ o(1)

)
ε,

which in turn implies that, say, P(X = 0) ≤ exp(−nε/4). Finally, the expected number
of resolving sets R of size r is at most(

n

r

)
exp

(
−n

ε

4

)
≤ exp

(
O

(
log3 n

log log n

)
− Ω

(
log3 n

))
= o(1),

and the result follows by Markov’s inequality.
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Now we point out the differences with the (slightly easier) case i = 0. In this case
we have

µ = (1 + o(1))

(
n

2

)(
p2 + (1− p)2

)r
= (1 + o(1))

(
n

2

)
qr.

and

∆ = (1 + o(1))3

(
n

3

)(
p3 + (1− p)3

)r
δ = (1 + o(1))2n

(
p2 + (1− p)2

)r
= (2 + o(1))nqr.

Then, again using qr = n−2+ε,

log (P(X = 0)) ≤ −(1 + o(1))

(
n

2

)
qr
(

1− n
(
p3 + (1− p)3

p2 + (1− p)2

)r
eO(nqr)

)
= −(1 + o(1))

nε

2

(
1− n

(
1− p− p2

p2 + (1− p)2

)r
eO(nε−1)

)
≤ −n

ε

3

(
1− n

(
1− 1− q

2q

)r)
≤ −n

ε

3

(
1− n exp

(
−1− q

2q
· (2− ε) log n

log(1/q)

))
.

Now, by assumption, p ≤ (1−ε), and therefore 1−q = 2p(1−p) ≥ (1+o(1))2ε. Hence,
the minimum of f(q) = (q− 1)/(q log q) is attained at 1− q0 such that q0 = (2 + o(1))ε,
and the remaining calculations can be performed as before. �

The next two theorems show that in all other cases we consider, the ratio between
the upper and the lower bounds is at most (2 + o(1)). We will assume until the end of
this section that d = o(n), as for d = Ω(n) Theorem 4.2 can be applied.

Theorem 4.3. Suppose that log n � d = p(n − 1) = o(n). Let i ≥ 1 be the largest
integer such that di = o(n), let c = c(n) = di+1/n, and η = logn d

i. Suppose that
c− 2 log n→∞. Finally, let G = (V,E) ∈ G(n, p). Then, a.a.s.

β(G) ≥ (η + o(1))
n log n

di
.

Proof. Put ω = ω(n) := d/(log n)→∞, and let ε = ε(n) > 0 be any function tending
(slowly) to zero such that ω−1/2 = o(ε), d/n = o(ε), and ε � (log log n)/(log n). We
will show that a.a.s. no R of cardinality r = (η − ε)(n log n)/di is a resolving set.

The general approach is similar to the previous proof. As before, we are going to test
all sets R ⊆ V with |R| = r and partition them into 4 bins.
– Bin 1 contains sets with |N(R, i− 1)| > (η − ε/2)n logn

d
;

– Bin 2 contains sets with |N(R, i − 1)| ≤ (η − ε/2)n logn
d

and there is at most one
vertex at distance at least i+ 1 from R;
– Bin 3 contains sets with |N(R, i−1)| ≤ (η−ε/2)n logn

d
, there are at least two vertices

at distance at least i + 1 from R, and there is at least one vertex at distance at least
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i+ 2 from R;
– Bin 4 contains all remaining sets.

The observation is that when all sets under consideration are in Bin 4, then there is
no resolving set of cardinality r. Indeed, if this property holds, then for every set R
with |R| = r there are at least two vertices at distance exactly i+ 1 from every vertex
from R and hence they cannot be distinguished by R.

It follows from Lemma 2.1(i) (after applying it r times, for each vertex of R) that
a.a.s. for all R ⊆ V with |R| = r we have

|N(R, i− 1)| ≤ rdi−1(1 +O(ω−1/2)) ≤ (η − ε/2)
n log n

d
= O

(n
ω

)
.

Hence, a.a.s. Bin 1 is empty. Similarly, it follows from Lemma 4.1 that the diameter of
G is i+ 1 a.a.s. so Bin 3 is empty a.a.s. It remains to show that a.a.s. Bin 2 is empty.

Fix any R ⊆ V with |R| = r and perform BFS until N(R, i− 1) is discovered. Since
here we count sets with good expansion properties, we may assume that |N(R, i−1)| ≤
(η−ε/2)n logn

d
. Now, we are going to estimate the probability that there are at least two

vertices in V \N(R, i− 1) that are not adjacent to any vertex in N(R, i− 1). Noticing
that d/n = o(ε) and using 1 − x ≤ e−x, we get that the probability that at most one
vertex is not adjacent to N(R, i − 1) (we have at most n choices for this vertex) is at
most

n
(
1− (1− p)|N(R,i−1)|)n(1−O(1/ω))

≤ n
(

1− (1− p)(η−ε/2)
n logn

d

)n(1−O(1/ω))

= n
(

1− exp
(
− (η − ε/2 + o(ε)) log n

))n(1−O(1/ω))

≤ n
(

1− exp
(
− (η − ε/3) log n

))n(1−O(1/ω))

= exp
(
log n− n1−η+ε/3(1− o(1))

)
= exp

(
log n− n1−η+ε/4nε/12(1− o(1))

)
≤ exp

(
−n1−η+ε/4) .

(The last line follows since ε� (log log n)/(log n) implies that

nε/12(1− o(1)) > exp
(
(ε/12) log n− 1

)
> exp(2 log log n) = log2 n,

and so replacing ε/3 by ε/4 is enough to make the additive log n-term to be negligible.)
Hence, the probability that R belongs to Bin 2 is at most exp

(
−n1−η+ε/4). On the

other hand, the number of possible choices for R is equal to(
n

r

)
≤ n(η−ε)n logn

di ≤ exp

(
n(log n)2

di

)
≤ exp

(
n1−η+(2 log logn)/(logn)

)
,

and so Bin 2 is empty a.a.s. after applying the union bound. The result follows. �

The next theorem deals with slightly smaller values of c. Since the diameter might
change from i+ 1 to i+ 2 in this situation, a more careful treatment is required.
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Theorem 4.4. Suppose that log3 n � d = p(n − 1) = o(n). Let i ≥ 1 be the
largest integer such that di = o(n), and let c = c(n) = di+1/n. Suppose that ec >
(log n)/(3 log log n) (in particular, c → ∞) and c ≤ 3 log n. Finally, let G = (V,E) ∈
G(n, p). Then, a.a.s.

β(G) ≥
(

i

i+ 1
+ o(1)

)(
di

n
+ e−c

)−1
(log n).

Proof. The proof is similar to the one used to prove Theorem 4.3. This time the diameter
is a.a.s. at most i + 2 by Lemma 4.1 (in fact, it is a.a.s. equal to i + 2, provided that
c−2 log n→ −∞) so the proof has to be slightly adjusted. However, we will show that
a.a.s. for every set R of the desired cardinality there are at least two vertices at distance
i+ 1 from every vertex of R (it is clear that these vertices cannot be distinguished by
R).

Let ω = ω(n) = min{(d/ log3 n)1/2, (log n)1/2} → ∞. We will consider two cases
independently.

Case 1 : Suppose first that e−cn = Adi for some A = A(n) = Ω(1) (A might tend to
infinity); in particular, c ≤ log n. Fix η > 0 and take any R ⊆ V with

|R| = r :=
(
η − ω−1/2

)
ec(log n) = (1 + o(1))ηec(log n).

As before, (based on Lemma 2.1(i) applied independently r times, since d� log3 n and
di−1/n = c/d2 = o(log−1 n)), we may assume that

|N(R, i− 1)| ≤ (1 + o(log−1 n))rdi−1 =
(
η − (1 + o(1))ω−1/2

)
(n log n)/(Ad) = o(n),

since a.a.s. there is no R that violates this condition. Hence, after exposing edges from
S(R, i− 1) to S(R, i), we get that the probability that a vertex outside of N(R, i− 1)
is not adjacent to any vertex in S(R, i− 1) is

p` = (1− p)|S(R,i−1)|

≥ exp
(
−
(
η − (1 + o(1))ω−1/2

)
A−1(log n)(1 +O(d/n))

)
= exp

(
−
(
η − (1 + o(1))ω−1/2

)
A−1(log n)

)
= exp

((
−η/A+ (1 + o(1))ω−1/2/A

)
(log n)

)
,

where the third line follows from the fact that d/n = c/di ≤ c/d� log−2 n, and hence
the term exp(O((log n)d/n)) = exp(o(1)) = (1 + o(1)), and it is thus absorbed in the
leading factor (1 + o(1)).

Now, fix any v /∈ N(R, i). We will show that the probability of having all coordinates
equal to i + 1 is large enough and so with high probability there are at least two such
vertices, which implies that R is not a resolving set. For x ∈ R, let Ax = Ax(v) be the
event that v ∈ S(x, i+ 1). As before, it follows from Lemma 2.1(i) that we may assume
that |S(x, i)| = (1 +O(ω−1 log−1 n))di (recall that ω ≤ (d/ log3 n)1/2, and thus the first
and more important error term of Lemma 2.1(i) is bounded by O(1/

(
ω(log n)(3/2)

)
).

Since rdi = (1+o(1))ηn log n/A could be of order at least n, it may happen that S(x, i)
overlaps with neighbourhoods of other vertices of R. However, this actually helps, since
the Ax’s (x ∈ R) are positively correlated (the fact that there is at least one edge from
v to S(x1, i) for some x1 ∈ R increases the chances that there is at least one edge from
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v to S(x2, i) for some x2 ∈ R \ {x1}). Hence, the probability that v has all coordinates
equal to i+ 1 is

pv = P

(⋂
x∈R

Ax

)
≥

(
1− (1− p)(1+O(ω−1 log−1 n))di

)r
=

(
1− e−c+O(ω−1)

)r
=

(
1− (1 +O(ω−1))e−c

)r
= exp

(
−(1 +O(ω−1))e−cr

)
= exp

(
−(η − (1 + o(1))ω−1/2)(log n)

)
,

where the second line follows, since e−c ≤ (3 log log n)/(log n), and the second last
equation follows since O((e−c)2r) = O(e−cr(log log n)/(log n)) = O(ω−1e−cr), and thus
the quadratic term O(x2r) coming from the approximation (1−x)r = exp(−xr+O(x2r))
is already absorbed in the given error term.

Note that pv is independent of p`, since for the bound on pv only previously unexposed
edges between vertices from S(R, i) and vertices not in N(R, i) are taken into account.
Hence, the expected number of vertices with all coordinates equal to i+ 1 is

(1 + o(1))np`pv ≥ (1 + o(1)) exp
(

(1− η(1 + 1/A) + (1 + o(1))ω−1/2(1 + 1/A))(log n)
)

≥ (1 + o(1))n1−ηA+1
A exp(log3/4 n)

≥ n1−ηA+1
A (log n)4,

where we used that ω ≤ (log n)1/2 and (1 + o(1)) exp(log3/4 n) ≥ log4 n. It follows from

Chernoff’s bound (2) that with probability at most exp(−n1−ηA+1
A (log n)3) there are

less than two such vertices, and hence this is also an upper bound for the probability
that a given R is a resolving set. Put η = ( i

i+1
)( A
A+1

). We get that a.a.s. there is no
resolving set of size r by the union bound, since the number of sets of cardinality r is
at most

nr = exp(r log n) ≤ exp(ηec(log n)2) = exp(O(n(log n)2/di)) = exp(O(n1−i/(i+1)(log n)2)),

where the last equality follows since di = Ω(n
i

i+1 ).
Case 2 : Using exactly the same argument, one can deal with the case e−cn � di

(but still it is assumed that c ≤ 3 log n). We only point out the differences comparing
to the previous case. This time we take

r :=
(
η − ω−1/2

) n log n

di
= (1 + o(1))η

n log n

di
,

and, using the same calculations as before, we may assume that

|N(R, i− 1)| ≤
(
η − (1 + o(1))ω−1/2

)
(n log n)/d,

and hence we obtain

p` ≥ exp
((
−η + (1 + o(1))ω−1/2

)
(log n)

)
.
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Arguing as before, we obtain

pv ≥
(
1− (1 +O(ω−1))e−c

)r
= exp

(
−O

(
e−cn

di

)
(log n)

)
≥ exp(−O(ω−1 log n)),

assuming additionally that ω−1 ≥ e−cn
di

, which we may, since e−cn
di

= o(1); that is,

ω = min{(d/ log3 n)1/2, (log n)1/2, diec/n} → ∞. As before, we conclude that

(1 + o(1))np`pv ≥ n1−η(log n)4,

and so the assertion holds for η = i
i+1

, completing the proof of our theorem. �
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