
SPARSE GRAPHS ARE NOT FLAMMABLE

PAWE L PRA LAT

Abstract. In this paper, we consider the following k-many firefighter problem on a
finite graph G = (V,E). Suppose that a fire breaks out at a given vertex v ∈ V . In each
subsequent time unit, a firefighter protects k vertices which are not yet on fire, and then
the fire spreads to all unprotected neighbours of the vertices on fire. The objective of
the firefighter is to save as many vertices as possible.

The surviving rate ρk(G) ofG is defined as the expected percentage of vertices that can
be saved when a fire breaks out at a uniformly random vertex of G. Let τk = k+2− 1

k+2 .
We show that for any ε > 0 and k ≥ 2, each graph G on n vertices with the average degree
at most τk − ε is not flammable; that is, ρk(G) > 2ε

5τk
> 0. Moreover, a construction of

a family of flammable random graphs is proposed to show that the constant τk cannot
be improved.

1. Introduction

The following firefighter problem on a finite graph G = (V,E) was introduced by Hart-
nell at the conference in 1995 [10]. Suppose that a fire breaks out at a given vertex v ∈ V .
In each subsequent time unit, a firefighter protects one vertex which is not yet on fire,
and then fire spreads to all unprotected neighbours of the vertices on fire. (Once a vertex
is on fire or gets protected it stays in such state forever.) Since the graph is finite, at
some point each vertex is either on fire or is protected by the firefighter, and the process
is finished. (Alternatively, one can stop the process when no neighbour of the vertices on
fire is unprotected. The fire will no longer spread.) The objective of the firefighter is to
save as many vertices as possible. Today, over 15 years later, our knowledge about this
problem is much greater and a number of papers have been published. We would like to
refer the reader to the survey of Finbow and MacGillivray for more information [7].

We would like to focus on the following property. Let sn(G, v) denote the number of
vertices in G the firefighter can save when a fire breaks out at vertex v ∈ V , assuming
the best strategy is used. The surviving rate ρ(G) of G, introduced in [6], is defined
as the expected percentage of vertices that can be saved when a fire breaks out at a
random vertex of G (uniform distribution is used for the initial placement), that is,
ρ(G) = 1

n2

∑
v∈V sn(G, v). It is not difficult to see that for cliques ρ(Kn) = 1

n
, since

no matter where a fire breaks out only one vertex can be saved. For paths we get that

ρ(Pn) =
1

n2

∑
v∈V

sn(G, v) =
1

n2
(2(n− 1) + (n− 2)(n− 2)) = 1− 2

n
+

2

n2
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(one can save all but one vertex when a fire breaks out at one of the leaves; otherwise
two vertices are burned). It is not surprising that a path can be easily protected, and
in fact, all trees have this property. Cai, Cheng, Verbin, and Zhou [3] proved that the
greedy strategy of Hartnell and Li [11] for trees saves at least 1−Θ(log n/n) percentage
of vertices on average for an n-vertex tree. Moreover, they managed to prove that for
every outerplanar graph G, ρ(G) ≥ 1−Θ(log n/n). Both results are asymptotically tight
and improved earlier results of Cai and Wang [4]. Note that there is no hope for similar
result for planar graphs, since, for example, ρ(K2,n) = 2/(n+ 2) = o(1).

Let us stay focused on sparse graphs. It is clear that sparse graphs are easier to control
so their surviving rates should be relatively large. Finbow, Wang, and Wang [8] showed
that any graph G with average degree strictly smaller than 8/3 has the surviving rate
bounded away from zero. Formally, it has been shown that any graph G with n ≥ 2
vertices and m ≤ (4

3
− ε)n edges satisfies ρ(G) ≥ 6ε

5
> 0, where 0 < ε < 5

24
is a fixed

number. This result was recently improved by the author of this paper to show that any
graph G with average degree strictly smaller than 30/11 has the surviving rate bounded
away from zero [13].

Theorem 1 ([13]). Suppose that graph G has n ≥ 2 vertices and average degree at most
30
11
− ε for some 0 < ε < 1

2
. Then, ρ(G) ≥ ε

30
.

(Note that the goal was to show that the surviving rate is bounded away from zero, not to
show the best lower bound for ρ(G). The constant 1

30
can be easily improved with more

careful calculations.)
On the other hand there are some dense graphs with large surviving rates (take, for

example, a large collection of cliques). However, in [13] a construction of a family of
sparse random graphs on n vertices with the surviving rate tending to zero as n goes to
infinity is proposed. Hence the result is tight and the constant 30

11
cannot be improved.

In this paper, we study the following natural generalization of the problem. Let k ∈ N.
Suppose that the firefighter has now more resources, and can protect up to k vertices
which are not yet on fire, at each step of the process. Let snk(G, v) and ρk(G) denote the
corresponding parameters of sn(G) and ρ(G), respectively, when the firefighters protect
k vertices each time step. In particular, sn(G, v) = sn1(G, v) and ρ(G) = ρ1(G). We say
that a family of graphs G is k-flammable if for any ε > 0 there exists G ∈ G such that
ρk(G) < ε.

It turns out that the problem for k ≥ 2 is easier than the k = 1 case. In this paper, we
prove that τk = k + 2− 1

k+2
is the threshold in this case; that is, all graphs with average

degree strictly less than τk are not k-flammable, but the family of graphs with average
degree at least τk is k-flammable.

Theorem 2. Let k ∈ N, τk = k + 2 − 1
k+2

, and ε > 0. Suppose that the graph G has

n ≥ 2 vertices and average degree at most τk − ε. Then, ρk(G) ≥ 2ε
5τk

.

In order to show that this result is best possible, consider the family G(n, d, d + 2) of
bipartite (d, d + 2)-regular graphs (n ∈ N, d ≥ 3). This family consists of all bipartite
graphs with two parts X and Y such that |X| = (d + 2)n and |Y | = dn. Each vertex
in X has degree d, whereas vertices in Y have degree d + 2. Our next result refers to
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the probability space of random (d, d + 2)-regular graphs with uniform distribution. We
say that an event holds asymptotically almost surely (a.a.s.) if the probability that it
holds tends to one as n goes to infinity. We show that for G ∈ G(n, k + 1, k + 3) we get
that ρk(G) = o(1) a.a.s. which implies that this family is k-flammable. Since the average
degree of G is (deterministically)

(k + 1)n(k + 3) + (k + 3)n(k + 1)

(k + 1)n+ (k + 3)n
= k + 2− 1

k + 2
,

Theorem 2 is sharp.

Theorem 3. Let k ≥ 2, and let G ∈ G(n, k + 1, k + 3). Then, a.a.s.

ρk(G) = Θ(log n/n) = o(1).

2. Sparse graphs are not k-flammable

In this section, we prove Theorem 2. The main tool is the discharging method which is
originated and commonly used in graph coloring problems. It is an obvious generalization
of the result from [8] for k = 1.

Proof of Theorem 2. Let k ∈ N, τk = k + 2 − 1
k+2

, and ε > 0. Let G = (V,E) be any

graph on n ≥ 2 vertices, m edges, and with 2m
n
≤ τk − ε.

Let V1 ⊆ V be the set of vertices of degree at most k. Let V2 ⊆ V \ V1 be the set of
vertices of degree k + 1 that are adjacent to at least one vertex of degree at most k + 1.
Finally, let V3 ⊆ V \ (V1 ∪ V2) be the set of vertices of degree k + 1 that are adjacent
to at least one vertex of degree k + 2 with at least two neighbours of degree k + 1. The
observation is that the fire can be easily controlled when the process starts at any vertex
in V1 ∪ V2 ∪ V3. Indeed, when the fire starts at v ∈ V1, the firefighter can protect all
neighbours of v saving at least half of the vertices. When the fire starts at v ∈ V2, then
the firefighter protects all neighbours of v but the vertex u of degree at most k + 1. The

fire spreads to u in the next round but it is stopped there. At least a n−2
n
≥ (2+k)−2

2+k
≥ 1

2

fraction of vertices is saved. Similarly, when the fire starts at v ∈ V3, the firefighter can
direct the fire to vertex of degree k+ 2, then to another vertex of degree k+ 1, and finish

the job there saving at least a n−3
n
≥ (3+k)−3

3+k
≥ 2

5
fraction of the graph.

It remains to show that the fact that G is sparse (2m
n
≤ τk− ε) implies that V1∪V2∪V3

contains a positive fraction of all vertices. To show this, we use the discharging method
mentioned earlier. To each vertex v ∈ V \ (V1 ∪ V2 ∪ V3), we assign an initial weight of
ω(v) = deg(v) ≥ k+ 1. Now, every vertex of degree at least k+ 2 gives 1

k+2
to each of its

neighbours of degree k + 1 that is in v ∈ V \ (V1 ∪ V2 ∪ V3). Let ω′(v) be a new weight
after this discharging operation. Clearly

∑
v∈V \(V1∪V2∪V3) ω(v) =

∑
v∈V \(V1∪V2∪V3) ω

′(v).

For each vertex v ∈ V \ (V1 ∪ V2 ∪ V3) of degree k + 1 we have

ω′(v) = ω(v) + (k + 1)
1

k + 2
= k + 2− 1

k + 2
= τk,

since all neighbours of v are of degree at least k + 2 (otherwise, v would be in V2). For
each vertex v ∈ V \ (V1 ∪ V2 ∪ V3) of degree k + 2 we have

ω′(v) ≥ ω(v)− 1

k + 2
= k + 2− 1

k + 2
= τk,
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since at most one neighbour of v from V \ (V1 ∪ V2 ∪ V3) has degree k + 1 (otherwise, all
neighbours of v of degree k+ 1 would be in V2 ∪ V3 and so v would not receive anything).
Finally, each vertex v ∈ V \ (V1 ∪ V2 ∪ V3) of degree at least k + 3 must have

ω′(v) ≥ ω(v)− deg(v)
1

k + 2
≥ (k + 3)(k + 1)

k + 2
= k + 2− 1

k + 2
= τk.

From this and the fact that G is sparse it follows that

(τk − ε)n ≥ 2m =
∑
v∈V

deg(v) ≥
∑

v∈V \(V1∪V2∪V3)

deg(v) =
∑

v∈V \(V1∪V2∪V3)

ω′(v)

≥ τk (n− |V1| − |V2| − |V3|) .
Hence,

|V1|+ |V2|+ |V3| ≥
εn

τk
,

which implies that with probability at least ε/τk the fire starts on V1 ∪ V2 ∪ V3 (since a
fire breaks out at a random vertex of G). If this is the case, then we showed that at least
a 2/5 fraction of vertices can be saved, so ρk(G) ≥ (2/5)(ε/τk). This finishes the proof of
the theorem. �

3. (k + 1, k + 3)-regular graphs are k-flammable

In this section, we prove Theorem 3. In order to do it, we need to investigate some
properties of random (d, d+ 2)-regular graphs. Random d-regular graphs are well known
and studied before. We know, for example, that a.a.s. almost all vertices have the property
that the local neighbourhood of the vertex induces a tree, and that a random d-regular
graph has good expansion properties. (For more information on this model, see for ex-
ample [14] or any textbook on random graphs [1, 12].) Random (d, d+ 2)-regular graphs
have similar properties but, since no general result is known, we need to prove desired
results from scratch.

Instead of working directly in the uniform probability space of random (d, d+2)-regular
graphs on (2d + 2)n vertices G(n, d, d + 2), we use the pairing model, which is described
next. This model was first introduced by Bollobás [2] to study random d-regular graphs.
Consider d(d + 2)n points (forming set PX) partitioned into (d + 2)n labeled buckets
x1, x2, . . . , x(d+2)n of d points each. Another d(d+2)n points (forming PY ) are partitioned
into dn labeled buckets y1, y2, . . . , ydn, this time each consisting of d+ 2 points. A pairing
of these points is a perfect matching between PX and PY into d(d + 2)n pairs. Given
a pairing P , we may construct a multigraph G(P ), with loops allowed, as follows: the
vertices are the buckets x1, x2, . . . , x(d+2)n and y1, y2, . . . , ydn; a pair {x, y} in P (x ∈ PX ,
y ∈ PY ) corresponds to an edge xiyj in G(P ) if x and y are contained in the buckets xi
and yj, respectively.

It is an easy fact that the probability of a random pairing corresponding to a given
simple graph G is independent of the graph, hence the restriction of the probability
space of random pairings to simple graphs is precisely G(n, d, d+ 2). Moreover, it can be
shown (see Lemma 4) that a random pairing generates a simple graph with probability

asymptotic to e−(d2−1)/2 depending on d but not on n. Hence, any event holding a.a.s.
over the probability space of random pairings also holds a.a.s. over the corresponding
space G(n, d, d + 2). For this reason, asymptotic results over random pairings suffice for
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our purposes. One of the advantages of using this model is that the pairs may be chosen
sequentially so that the next pair is chosen uniformly at random over the remaining
(unchosen) points.

Lemma 4. Let P be a random pairing. Then G(P ) is simple with probability tending to

e−(d2−1)/2 as n→∞.

Since the well-known method of moments (see, for example [1] for details) can be used
to show the result, the proof is omitted here.

Now, we observe that a.a.s. almost all vertices have the property that the local neigh-
bourhood of the vertex induces a tree. This is, of course, not a good property for the
firefighter, and it will be used to establish an upper bound for the threshold we investi-
gate. For d ≥ 3, a cycle is called short if it has length at most L = logd2−1 log n. Since
the proof is analogous to the one for classic random d-regular graphs, it is omitted here.

Lemma 5. If d ≥ 3 and G ∈ G(n, d, d+ 2), then a.a.s. the number of vertices that belong
to a short cycle is at most log n.

Now, we will move to more technical lemma showing that a.a.s. G(n, d, d+ 2) has good
expansion properties. We start with investigating subsets of X and subsets of Y only
(Lemma 6), and then generalize it to any subset of V = X ∪ Y (Lemma 7). Let N(K)
denote the set of vertices in V \K that have at least one neighbour in K.

Lemma 6. Let d ≥ 3, ε = 0.237, and G = (X, Y,E) ∈ G(n, d, d + 2). The following
properties hold a.a.s.

(a) For every K ⊆ Y with 1 ≤ k = |K| ≤ 1
2
|Y | = dn

2
, we have that

|N(K)| ≥ k
d+ 2

d
(1 + ε).

(b) For every K ⊆ X with 1 ≤ k = |K| ≤ 1
2
|X| = (d+2)n

2
, we have that

|N(K)| ≥ k
d

d+ 2
(1 + ε).

The Lemma implies that for any K ⊆ X (or K ⊆ Y ) with at most half of the vertices
from X (or Y ), respectively, N(K) contains substantially more points (in the pairing
model) comparing to the number of points that are associated with K. Note also that
the choice of ε is optimized for the best possible outcome, and is obtained numerically. A
slightly smaller value could be obtained with less delicate, but analytical, argument.

Proof. We prove only part (a), leaving details in part (b) for the reader. Let K ⊆ Y with
1 ≤ k = |K| ≤ 1

2
|Y | = dn

2
, and let K ′ ⊆ X with k′ = |K ′| = k d+2

d
(1 + ε). Let A(K,K ′)

denote the event that all edges from K go to K ′; that is, N(K) ⊆ K ′. Using the pairing
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model, we get that

P(A(K,K ′)) =

(
k′d

k(d+ 2)

)
(k(d+ 2))!

(d(d+ 2)n− k(d+ 2))!

(d(d+ 2)n)!

=

(
k(d+ 2)(1 + ε)

k(d+ 2)

)
(k(d+ 2))!

(d(d+ 2)n− k(d+ 2))!

(d(d+ 2)n)!

=
(k(d+ 2)(1 + ε))!

(εk(d+ 2))!

(d(d+ 2)n− k(d+ 2))!

(d(d+ 2)n)!
.

Using Stirling’s formula (z! = (1 + o(1))
√

2πz(z/e)z), we get

P(A(K,K ′)) = Θ(1)
(k(d+ 2)(1 + ε))k(d+2)(1+ε)

(εk(d+ 2))εk(d+2)

(d(d+ 2)n− k(d+ 2))d(d+2)n−k(d+2)

(d(d+ 2)n)d(d+2)n

= Θ(1)

(
k

dn

)k(d+2)(
(1 + ε)1+ε

εε

)k(d+2)(
1− k

dn

)d(d+2)n−k(d+2)

. (1)

Therefore, the expectation of Z = Z(k), the number of pairs (K,K ′) with |K| = k and
|K ′| = k′ = k d+2

d
(1 + ε) such that A(K,K ′) holds, is

EZ =

(
dn

k

)(
(d+ 2)n

k d+2
d

(1 + ε)

)
· P(A(K,K ′))

= Θ(k−1)

(
dn
k

)k(
1− k

dn

)dn−k
(

dn
k(1+ε)

)k d+2
d

(1+ε)

(
1− k(1+ε)

dn

)(d+2)n−k d+2
d

(1+ε)
· P(A(K,K ′)). (2)

Combining (1) and (2) together we get

EZ = Θ(k−1)

(
dn

k

)−k(d+1− d+2
d

(1+ε))(
(1 + ε)1+ε

εε

)k(d+2)

(1 + ε)−k
d+2
d

(1+ε)

(
1− k

dn

)d(d+1)n−k(d+1)(
1− k(1 + ε)

dn

)−(d+2)n+k d+2
d

(1+ε)

If k = o(n), then

EZ = O(1)

(
dn

k

)−k(d+1− d+2
d

(1+ε))(
(1 + ε)1+ε

εε

)k(d+2)

exp

(
(1 + o(1))

k(d+ 2)(1 + ε)

d

)
=

(
Θ

(
dn

k

))−k(d+1− d+2
d

(1+ε))

= o(n−1),

since d+ 1− d+2
d

(1 + ε) > 1. On the other hand, if k = (1 + o(1))cdn with c ∈ (0, 1
2
], then

EZ = O
((

(1 + o(1))f(c, ε, d)
)n)

,

where

f(c, ε, d) = ccd(d+1− d+2
d

(1+ε))(1 + ε)(1+ε)cd(d+2)(1− 1
d

)ε−εcd(d+2)

· (1− c)d(d+1)(1−c)(1− c(1 + ε))−(d+2)(1−c(1+ε)).
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Hence, if for any d ≥ 3 and c ∈ (0, 1
2
] we have f(c, ε, d) < 1, we get that EZ is tending to

zero exponentially (and so EZ = o(n−1)). Not surprisingly the best value of ε depends on
d and the extreme case is for d = 3. One can check numerically that the desired condition
is satisfied with ε = 0.237 (f(1

2
, ε, 3) = 0.998) but not with ε+ 0.001 (f(1

2
, ε+ 0.001, 3) =

1.006).

We proved that for any 1 ≤ k ≤ dn
2

, EZ(k) = o(n−1) and so
∑dn/2

k=1 EZ(k) = o(1). It
follows from Markov’s inequality that a.a.s. there is no pair (K,K ′) such that A(K,K ′)
holds and the proof of part (a) is done. �

Lemma 7. Let d ≥ 3, ε′ = 0.088, and G = (X, Y,E) ∈ G(n, d, d + 2). Then, a.a.s. for
every K ⊆ V = X ∪ Y with 1 ≤ k = |K| ≤ 1

2
|V | = 1

2
(|X|+ |Y |) = (d+ 1)n, we have that

|N(K)| ≥ ε′k.

Proof. First, note that ε′ < 3
8
ε, where ε = 0.237 is defined in Lemma 6. Since we aim for

a statement that holds a.a.s., we can assume that properties (a) and (b) from Lemma 6
hold. Take K ⊆ V with 1 ≤ |K| ≤ (d + 1)n. Let KX = K ∩X and KY = K ∩ Y be a
partition of the set K. We will consider four cases depending on the relative sizes of KX

and KY .
Case 1. Suppose that (d+2)|KY | ≤ d|KX | ≤ d(d+2)n/2; that is, the number of points

in the pairing model associated with KY is at most the one associated with KX . Let
N [K] = N(K) ∪K denote the closed neighbourhood of K. It follows from Lemma 6(b)
that

|N [K]| ≥ |N [KX ]| ≥ |KX |+ (1 + ε)
d

d+ 2
|KX |.

Since

|K| = |KX |+ |KY | ≤
(

1 +
d

d+ 2

)
|KX |,

we get that

|N [K]|
|K|

≥
1 + (1 + ε) d

d+2

1 + d
d+2

≥
1 + (1 + ε)3

5

1 + 3
5

= 1 +
3

8
ε > 1 + ε′.

Case 2. Suppose that |KX | > (d + 2)n/2; that is, the number of points associated
with KX is more than half of the points in X (quarter of the points in V ). Note that
this implies that less than half of the points in Y (again, quarter of the points in V ) are
associated with KY , and so (d+ 2)|KY | < d|KX |.

Take any K ′X ⊆ KX such that |K ′X | =
(d+2)n

2
. Since

|N [K]| ≥ |N [K ′X ]| ≥ |K ′X |+ (1 + ε)
d

d+ 2
|K ′X | =

((
1 +

ε

2

)
d+ 1

)
n

by Lemma 6(b), we get

|N [K]|
|K|

≥
((

1 + ε
2

)
d+ 1

)
d+ 1

≥
((

1 + ε
2

)
3 + 1

)
4

= 1 +
3

8
ε > 1 + ε′.

The last two cases, Case 3 and 4, are symmetric to Case 1 and 2, respectively.
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Case 3. Suppose that d|KX | ≤ (d+2)|KY | ≤ d(d+2)n/2. This time we use Lemma 6(a)
to show that

|N [K]| ≥ |N [KY ]| ≥ |KY |+ (1 + ε)
d+ 2

d
|KY |,

and
|N [K]|
|K|

≥
1 + (1 + ε)d+2

d

1 + d+2
d

≥ 1 + (1 + ε)

1 + 1
= 1 +

1

2
ε > 1 + ε′.

Case 4. Suppose that |KY | > dn/2, which implies that d|KX | < (d+ 2)|KY |. Take any
K ′Y ⊆ KY such that |K ′Y | = dn

2
. Since

|N [K]| ≥ |N [K ′Y ]| ≥ |K ′Y |+ (1 + ε)
d+ 2

d
|K ′Y | =

((
1 +

ε

2

)
d+ 1 + ε

)
n

by Lemma 6(a), we get

|N [K]|
|K|

≥
((

1 + ε
2

)
d+ 1 + ε

)
d+ 1

≥ 1 +
1

2
ε > 1 + ε′,

and the proof is complete. �

Finally, we are ready to prove Theorem 3.

Proof of Theorem 3. Let k ≥ 2, ε′ = 0.088 as in Lemma 7, and G = (X, Y,E) ∈ G(n, k +
1, k + 3). Let U be the set of vertices that do not belong to a cycle of length at most
L = logk2+2k log n. Since we aim for a statement to hold a.a.s. we assume that the
properties from Lemma 5 and 7 hold.

It follows from Lemma 5 (with d = k + 1) that

|U | ≥ |V | − log n = (2d+ 2)n− log n.

Since

ρk(G) =
1

|V |2
∑
v∈V

snk(G, v)

=
1

|V |2
∑
v∈U

snk(G, v) +
1

|V |2
∑
v∈V \U

snk(G, v)

= (1 + o(1))
1

|U |
∑
v∈U

snk(G, v)

|V |
+O

(
|V \ U |
|V |

)
= (1 + o(1))

1

|U |
∑
v∈U

snk(G, v)

|V |
+O

(
log n

n

)
,

it is enough to show that snk(G, v) = Θ(log n) for every v ∈ U . Since G is (k + 1, k + 3)-
regular graph, it takes at least 1

2
logk2+2k n − O(1) steps to discover n/2 vertices. The

firefighter can clearly save Ω(log n) vertices until this is done (deterministically). Hence,
it remains to show that snk(G, v) = O(log n) for every v ∈ U .

Let v ∈ U and let st denote the number of vertices that catch fire at time t. It is
clear that in order to minimize st during the first few steps of the process when the game
is played on a tree, the firefighter should use a greedy strategy and protect any vertex
adjacent to the fire. Suppose that v ∈ U ∩X; that is, deg(v) = k+1. It is easy to see that
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s1 = 1 (initial vertex v is on fire), s2 = 1 (v has k+1 neighbours but only one catches fire,
since k of them are protected), s3 = (k + 2)− k = 2 (the neighbour of v on fire has k + 2
new neighbours but k of them will be saved), and s4 = 2k − k = k (two vertices on fire
have 2k neighbours but k of them are saved). We get the following recurrence relation:
s2 = 1 and for any r ∈ N,

s2r+2 = s2r+1k − k = (s2r(k + 2)− k)k − k.

After solving this relation we get that for r ∈ N

s2r =
k − 1

k(k + 2)(k2 + 2k − 1)

(
k(k + 2)

)r
+

k(k + 1)

k2 + 2k − 1
.

In particular at time T = 2bL/4c = 1
2

logk2+2k log n + O(1) we get that sT = Ω(
√

log n).
It is clear that the same bound holds for v ∈ U ∩ Y ; that is, when deg(v) = k + 3.

(Note that when k = 1 and v ∈ U ∩X, we have that s2s = 1 and s2s+1 = 2 for s ∈ N,
and a positive fraction of vertices can be saved. This is the reason why this construction
cannot be used for k = 1. In fact, it follows from Theorem 1 that the threshold in this
case is at 30

11
≈ 2.7272, not at τ1 = 1 + 2− 1

1+2
= 8

3
≈ 2.6666.)

From that point on, the number of vertices on fire is large (comparing to the number
of firefighters introduced) so that the fire will be spreading very fast. Let qt =

∑t
r=1 st be

the number of vertices on fire at time t; clearly qT ≥ sT = Ω(
√

log n). We claim that for
any t ≥ T we have that qt ≥ n/2 or qt ≥ qT (1 + ε′/2)t−T , and the proof is by induction.
The statement clearly holds for t = T . For the inductive step, suppose that the statement
holds for t ≥ T . If qt ≥ n/2, then qt+1 ≥ qt ≥ n/2 as well. Suppose then that qt < n/2. It
follows from Lemma 7 that at least ε′qt vertices are not on fire (including perhaps some
protected vertices) but are adjacent to vertices on fire. Thus, by the inductive hypothesis,
at least

ε′qt − t = (1− o(1))ε′qt >
ε′

2
qt

new vertices are going to catch fire at the next round, so

qt+1 ≥ qt(1 + ε′/2) ≥ qT (1 + ε′/2)t+1−T ,

and the claim holds. Note that the claim implies that at time T̂ ≤ log1+ε′/2 n = O(log n)
at least half of the vertices are on fire.

For t ≥ T̂ , it is easier to focus on Pt, the set of vertices that are not burning at time
t (including t vertices protected by the firefighter till this point of the process). Let

pt = |Pt| = n− qt. Note that for any t ≥ T̂ , we have pt ≤ pT̂ < n/2. We will prove that

if pt ≥ 2(k+3)
ε′

t, then

pt+1 ≤ pt

(
1− ε′

2(k + 3)

)
,

and this will finish the proof. Indeed, if this is true, then the inequality pt ≥ 2(k+3)
ε′

t must
be false for

t ≥ T̄ = T̂ + log
1/(1− ε′

2(k+3))
n = log1+ε′/2 n+ log

1/(1− ε′
2(k+3))

n = O(log n).

Therefore, at most pT̄ <
2(k+3)
ε′

T̄ = O(log n) vertices can be saved.
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We will prove the claim by induction. Suppose that 2(k+3)
ε′

t ≤ pt < n/2. Using Lemma 7
for the last time, we get that |N(Pt)| ≥ ε′pt; that is, at least ε′pt of burning vertices are
adjacent to some vertex from Pt. Since the maximum degree of G is k + 3, this implies
that at least ε′pt/(k + 3) vertices of Pt are adjacent to the fire. Hence, at least

ε′pt
k + 3

− t ≥ ε′pt
2(k + 3)

new vertices will catch the fire in the next round. The claim holds and the proof is
finished. �

4. Open Problems

It would be nice to find the threshold for other families of graphs, including planar
graphs.

Open Problem 8. Determine the largest real number M for which there exists a constant
c > 0 such that for every ε > 0, every planar graph with n > 2 vertices and average degree
at most M − ε has ρ(G) ≥ c · ε.

It follows from Theorem 1 and the fact that ρ(K2,n) = o(1) that 30
11
≤M ≤ 4. One can

generalize this question to any number of firefighters. The following result was proved
in [5], which implies that all planar graphs are not k-flammable for k ≥ 4.

Theorem 9 ([5]). Assume 4 firefighters are given at the first step, and then 3 at each
subsequent step. Then the firefighters have a strategy so that every planar graph has
surviving rate at least 1/2712.

They conjectured that the proof of this theorem could be modified to prove that for
some ε > 0, every planar graph G satisfies ρ3(G) > ε. This was recently shown in [9]. In
fact, slightly stronger result was proved.

Theorem 10 ([9]). Assume 3 firefighters are given at the first step, and then 2 at each
subsequent step. Then the firefighters have a strategy so that every planar graph has
surviving rate at least 2/21.

It is conjectured that planar graphs are not 2-flammable but our existing techniques
are too local to show it. Therefore, it seems that the Question 1 generalized to k ≥ 2
does not make sense (unless the conjecture is false).

The second question was asked in [8].

Open Problem 11. Determine the least integer g∗ for which there exists a constant
0 < c < 1 such that every planar graph G with girth at least g∗ has ρ(G) ≥ c.

Note that a connected planar graph with n vertices and girth g can have at most
g
g−2

(n − 2) edges (see, for example, [8]). Thus, from Theorem 1 it follows that g∗ ≤ 8.

It was shown in [15] that g∗ ≤ 7. Using the fact that ρ(K2,n) = o(1) one more time, we
conclude that 5 ≤ g∗ ≤ 7.
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5. Appendix

Proof of Lemma 4. Let λ = (d2 − 1)/2. We will show that the number of multiple edges
in G(P ), Z, converges in distribution to the independent Poisson distributed random
variable Po(λ), as n → ∞. We will use the well-known method of moments (see, for
example [1] for details) to show the result. We investigate the first moment (expectation)
only.

The number of possible (multiple) edges in G(P ) is d(d + 2)n2. Note that there are
(d(d + 2)n)! possible pairings (fix positions for the points in PX arbitrarily, permute the
points in PY , and connect corresponding points). The probability that there is a given
multiple edge is equal to(

d
2

)(
d+2

2

)
2(d(d+ 2)n− 2)!

(d(d+ 2)n)!
= (1 + o(1))

(d− 1)(d+ 1)

2d(d+ 2)n2
.

(After selecting two points at corresponding buckets, there are two ways to connect them.
Remaining points can be paired arbitrarily.) Thus, we get that

EZ = (1 + o(1))
(d− 1)(d+ 1)

2
= (1 + o(1))λ.
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The conclusion is that P(Z = k) = λk

k!
e−λ, and the result holds by taking k = 0. �

Proof of Lemma 5. A balanced (d, d+2)-regular tree contains d vertices on the first level,
d(d+1) vertices on the second level, d(d+1)(d−1) on the third, and so on. Let fi denote
the number of vertices in a balanced (d, d+ 2)-regular tree with i levels; that is,

fi = 1 + d

i−1∑
j=0

(d− 1)bj/2c(d+ 1)dj/2e = O
((

(d− 1)(d+ 1)
)i/2)

.

Note that the same (asymptotic) upper bound holds for a balanced (d+ 2, d)-regular tree
starting with a vertex of degree d+ 2.

Let u ∈ V = V (G) and let Ni(u) denote the set of vertices at distance at most i from u.
We will show that in the early stages of this process, the graphs grown from u tend to be
trees a.a.s.; hence, the number ni of elements in Ni(u) is equal to fi a.a.s. In other words, if
we expose the vertices at distance 1, 2, . . . , i from u step-by-step, then we have to avoid at
step j edges that induce cycles. That is, we wish not to find edges between any two vertices
at distance j from u or edges that join any two vertices at distance j to a same vertex at
distance j + 1 from u. We will refer to edges of this form as bad. Note that the expected
number of bad edges at step i+ 1 is equal to O(n2

i /n) = O(f 2
i /n) = O((d−1)i(d+ 1)i/n).

(There are O(ni) edges created at this point; for a given edge the probability of being bad
is O(ni/n).) Therefore, the expected number of bad edges found up to step i1 = dL/2e is
equal to

i1−1∑
j=0

O
(
(d− 1)j(d+ 1)j/n

)
= O

(
(d− 1)i1(d+ 1)i1/n

)
= O

(
(d2− 1)L/2/n

)
= O

(√
log n/n

)
.

(Recall that L = logd2−1 log n.) Hence, the expected number of vertices that belong
to a cycle of length at most L is O(

√
log n) and the assertion follows from Markov’s

inequality. �

Proof of part (b) in Lemma 6. For part (b), we show that for any K ⊆ X with 1 ≤ k =

|K| ≤ 1
2
|X| = (d+2)n

2
, and K ′ ⊆ Y with k′ = |K ′| = k d

d+2
(1 + ε),

P(A(K,K ′)) =

(
k′(d+ 2)

kd

)
(kd)!

(d(d+ 2)n− kd)!

(d(d+ 2)n)!

= Θ(1)

(
k

(d+ 2)n

)kd(
(1 + ε)1+ε

εε

)kd(
1− k

(d+ 2)n

)d(d+2)n−kd

.

This time, the expectation of Z ′ = Z ′(k), the number of pairs (K,K ′) with |K| = k and
|K ′| = k′ = k d

d+2
(1 + ε) such that A(K,K ′) holds, is

EZ ′ = Θ(k−1)

(
(d+ 2)n

k

)−k(d−1− d
d+2

(1+ε))(
(1 + ε)1+ε

εε

)kd
(1 + ε)−k

d
d+2

(1+ε)

(
1− k

(d+ 2)n

)(d−1)(d+2)n−k(d−1)(
1− k(1 + ε)

(d+ 2)n

)−dn+k d
d+2

(1+ε)
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If k = o(n), then

EZ ′ =
(

Θ

(
dn

k

))−k(d−1− d
d+2

(1+ε))

= o(n−1),

since d− 1− d
d+2

(1 + ε) > 1. If k = (1 + o(1))c(d+ 2)n with c ∈ (0, 1
2
], then

EZ ′ = O
((

(1 + o(1))g(c, ε, d)
)n)

,

where

g(c, ε, d) = cc(d+2)(d−1− d
d+2

(1+ε))(1 + ε)(1+ε)cd(d+2)(1− 1
d+2

)ε−εcd(d+2)

· (1− c)(d−1)(d+2)(1−c)(1− c(1 + ε))−d(1−c(1+ε)).

The part (b) is finished, since for any d ≥ 3 and c ∈ (0, 1
2
] we have g(c, ε, d) < 1. (In fact,

this time we could use slightly larger value of ε; that is, ε = 0.310.) �

Department of Mathematics, Ryerson University, Toronto, ON, Canada, M5B 2K3
E-mail address: pralat@ryerson.ca


