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Abstract. The broadcasting problem asks for the fastest way of transmitting a message
to all nodes of a communication network. We consider the broadcasting problem in conflict-
aware multi-channel networks. These networks can be modeled as undirected graphs in which
each edge is labeled with a set of available channels to transmit data between its endpoints.
Each node can send and receive data through any channel on its incident edges, with the
restriction that it cannot successfully receive through a channel when multiple neighbors
send data via that channel simultaneously.

We present efficient algorithms as well as hardness results for the broadcasting problem on
various network topologies. We propose polynomial time algorithms for optimal broadcasting
in grids, and also for trees when there is only one channel on each edge. Nevertheless, we
show that the problem is NP-hard for trees in general, as well as for complete graphs. In
addition, we consider balanced complete graphs as an important family of multi-channel
networks; we propose a policy for assigning channels to these graphs that, together with the
presented broadcasting schemes, provide fault-tolerant networks with optimal broadcasting
time.

1 Introduction

Multi-channel networks constitute a class of networks in which communication is achieved via
a set of orthogonal channels. Two nodes of a multi-channel network can directly communicate
if they share at least one common channel. Channels may represent different frequencies in
Multi-radio Wireless Networks [12, 15], different wavelengths in Free Space Optical Networks
(FSON) [2], or different communication buffers in parallel computers [17].

A multi-channel network can be modeled as an undirected graph with multiple labels on
edges, where vertices represent nodes in the network and labels represent available channels
between connected nodes. Communication is assumed to occur in discrete rounds in which a
node can transmit data through one of its channels. For a node u and channel c, we say that a
conflict occurs when two or more neighbors of u send data to u through channel c at the same
round, in which case u does not receive data through this channel. This definition of conflict
arises in many practical scenarios; for example, in wireless networks, conflicts can represent the
interference of radio waves with the same frequency.

Multi-channel networks have been studied in the context of wireless networks, in which
the underlying network is usually modeled as a geometric graph in Euclidean metric space.
Most research works on this trend do not focus on theoretical aspects of the problem. Besides,
geometric graphs are not good representatives of all types of wireless networks. For example,
consider indoor networks in which walls can block transmissions between pairs of nodes that fall
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in the transmission range of each other; the underlying network in these cases can form any graph
topology [18]. There are several works that provide heuristics for information dissemination in
wireless multi-channel networks assuming that conflicts do not occur [8, 10, 11].

A more realistic model that considers conflicts is known as the conflict-aware model [1, 19].
In this paper, we present the conflict-aware multi-channel model, a comprehensive model that
captures several aspects of multi-channel networks that are tied to existing network technologies,
in particular conflict awareness and the advantage of simultaneous communication through one
channel. Theoretical analysis of this model can provide insights into the capabilities of multi-
channel networks for future technology advances; particularly because the model represents a
broad spectrum of network technologies, such as wireless mesh networks, FSONs, and parallel
computers.

The focus of this work is on the Broadcasting Problem in multi-channel networks, in which
the goal is to transmit one message from a given source node to all other nodes in the minimum
number of rounds. In the classical model of broadcasting, each node can send data to at
most one of its neighbors via a telephone call (hence the model is called telephone model). In
contrast, in multi-channel networks, when a node u transmits through one channel c, all the
nodes connected to u via channel c will receive the message (if no conflicts occur). In wireless
networks, this is termed the Wireless Broadcast Advantage [16], and makes the broadcasting
problem more complicated compared to broadcasting under the telephone model [3, 6]. Note
that the telephone model can be considered as a restricted version of the multi-channel model
in which there is a single and unique channel associated with each edge, i.e., each node is
connected to its neighbors via distinct channels. Similarly to the related works in multi-channel
wireless networks [9, 12, 13, 15], we assume the broadcasting algorithms are centralized, i.e., the
algorithms know the topology of the network and the channels available for each edge.

Channel Assignment is another problem that has been studied for multi-channel wireless
networks [12, 13]. This problem asks to assign channels to the edges in a given network in order
to optimize the network performance – where the performance can refer to network goodput or
traffic [13] – or the number of conflicts or interference within the network [12]. We consider
this problem for multi-channel networks when the goal is to assign channels in a way to perform
broadcasting in minimum time. It is desirable that such channel assignment enables broadcasting
of more than a single message in parallel. We consider this problem for homogeneous multi-
channel networks that can be modeled by complete graphs with a balanced distribution of
channels for each node.

Summary of Results. In Section 2, we describe the conflict-aware multi-channel model.
In general, it is assumed that there can be any number of channels between a pair of nodes;
however in some occasions, we consider the case when there is only one channel on each edge
of the graph. The broadcasting problem seems to be much easier for this restricted case. In
Section 3, we show that the broadcasting problem is NP-hard for trees in the general case, while
we describe a polynomial time algorithm when there exists only one channel on each edge of
the tree. We also provide a polynomial time algorithm for optimal broadcasting in grids (in the
general case). In Section 4, we show that the broadcasting problem is NP-hard for complete
graphs, even if restricted to graphs with only one channel on each edge. In Section 5, we focus on
the special case of complete graphs when there is only one channel on each edge and the channel
assignment is balanced, i.e., each node is connected to approximately same number of nodes with
each channel. We refer to these graphs as balanced complete graphs, and show that broadcasting
in these networks requires at least three rounds when the number of different channels does
not grow too fast with the size of the network (which is the case in practical settings). On
the positive side, we provide a channel assignment that yields a balanced complete network
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for which broadcasting can always be completed in two rounds. This channel assignment also
enables broadcasting of k messages simultaneously in three rounds, where k is the number of
channels in the network.

2 Conflict-Aware Multi-Channel Model

A multi-channel network is modeled as an undirected graph G = (V,E) where V is the set of
nodes and E the set of edges. Each edge e ∈ E has a set of labels C(e) ⊆ {c1, c2, . . . , ck} that
denotes its set of available channels.

The communication of messages through the network occurs in discrete rounds and is gov-
erned by the following assumptions and restrictions. In any given round, a node may be involved
in receiving and/or transmitting (sending) messages through the channels on its incident edges.
If a node u transmits through a channel c, it cannot transmit through any other channel in
the same round, and also cannot receive through channel c. When u sends a message through
channel c, the message is simultaneously transmitted through all incident edges of u that have
channel c in their set of labels. A key restriction is that a node cannot successfully receive any
data through a channel when more than one of its neighbors send data through that channel.
More precisely, a node v can only receive a message through channel c in round r if exactly one
of the nodes that are adjacent to it with edges labeled with channel c is transmitting through
channel c in round r. Otherwise we say there is a conflict at node v on channel c. A node will
successfully receive the message if it is transmitted by any of its neighbors through a channel
without conflict.

The transmission of a message on any edge completes in one round: if in round r node u
transmits a message through channel c, then every node v such that e = (u, v) ∈ E and c ∈ C(e)
will receive the message during this round, provided that there is no conflict at v on channel c.
In this case we say that u informs v during round r, and node v is ready to transmit in round
r + 1 if desired. For any round r during the execution of the broadcast, we say that a node is
active if it is transmitting the message in round r and inactive otherwise.

Given a network represented by a graph G, the broadcasting problem is defined as follows.
At the beginning, a single node, called the source, has a message. In each round, those vertices
that have the message can transmit through one channel to inform some uninformed vertices.
The broadcasting completes when all vertices successfully receive the message. The broadcasting
problem asks for a scheme that completes this procedure in minimum time. We are interested in
centralized broadcasting schemes, i.e., we assume the broadcasting algorithm can be determined
in advance and with full knowledge of the network topology. Finally, we assume that the network
is static, thus nodes, edges, and their channel assignment remain fixed during the broadcast.
Figure 1 illustrates broadcasting in this model.

Figure 1: An illustration of broadcasting in the conflict-aware
multi-channel model. Assume node A is the source and sends
the message through channel 1 in the first round. Hence, at the
beginning of the second round, A, B, and C have the message.
Assume B sends the message through channel 1, and A and C
through channel 2. At the end of the round, node D receives the
message through both channels, node E receives the message
through channel 1 (via B); there is a conflict on channel 2 at
node F , which does not receive the message in this round.
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3 Basic Topologies

3.1 Trees

In this section, we show that the broadcasting problem in the general case (i.e., when there is
more than one channel between two nodes) is NP-hard even if the network topology is a tree.
On the positive side, we show that when there is a single channel on each edge of the tree, there
is an algorithm that finds the optimal broadcasting scheme in polynomial time.

Theorem 3.1. The broadcasting problem in the conflict-aware multi-channel model is NP-hard
for trees.

Proof. We use a reduction from the set cover problem, which is NP-hard [5]. Recall that an
instance of set cover includes a collection of subsets of a universe U , and the goal is to find the
minimum number of subsets that cover the universe. Given an instance I of set cover, we create
an instance of the broadcasting problem in a tree as follows. We create a tree T with a root node
and u children, where u = |U | is the size of the universe. Each child of the root is a leaf of the
tree and represents a member of the universe (hence T is a star). Each subset S in I is assigned
a label that represents a channel in the broadcast instance. For each member of S, the label of
S is added to the edge that connects the root with that member. For example, if S = {x, y},
the label of S is added to the edges that connect the root to the leaves x and y (See Figure 2).
It is not hard to see that there is a set cover of size k if and only if the broadcast finishes in
k rounds: assume there is a set cover of size k, then if the root sends the message through the
k channels associated with the k subsets (in any order), after k rounds all the nodes of T are
informed. This is because there are no conflicts (one channel is used at each round), and all the
nodes are covered by k channels. Similarly, if there is a broadcasting scheme that completes in
k rounds, the subsets associated with the k channels used by the root cover the universe.

The problem becomes easy when there is a single channel on each edge. Consider a tree of n
nodes with only one channel on each edge. We show that the optimal broadcasting scheme can
be obtained in O(n log n) time with a simple recursive algorithm.

Given a root node v, we compute the cost (number of rounds) of broadcasting from each
of v’s children recursively, and associate with each outgoing channel of v the cost of the most
expensive child connected to v with that channel. We then sort these channels in decreasing
order of associated cost and transmit through each one following this order. It is not hard
to see that this strategy is optimal. Note as well that there are no conflicts in this topology.
Algorithm 1 shows the procedure for computing the optimal broadcast scheme for a tree T and
channel assignment C. A simple implementation of the algorithm runs in O(n log n) time.

3.2 Grids

Unlike trees, the broadcasting problem can be solved in polynomial time for grids, even if there
are multiple channels on edges. In what follows, we describe a scheme for optimal broadcasting

Figure 2: The instance of the broadcasting
problem when the set cover instance I contains
the subsets W = {1, 2, 3}, X = {2, 4}, Y =
{3, 4}, and Z = {4, 5}.
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Algorithm 1 treeCost(root, T = (V,E), C)
time← 0
for v child of root do
Cost[v]← treeCost(v, Tv, C) {Tv denotes the tree rooted at v}

p← 1 {p counts the number of different channels seen so far}
for v in children of root sorted by Cost[v] do

if we have not sent the message through channel C((root, v)) then
time = max(time, p+ Cost[v])
p← p+ 1
inform through channel C((root, v))

return time

in a grid of size n×m.
Consider first the simple case when the source is one of the corner nodes. W.l.o.g., assume

the source is on the upper-leftmost node. A simple scheme is to send the message to the nodes
in the first row: after receiving the message, each node transmits to its right neighbor through
any one of the available channels. This takes n − 1 rounds. Then, in parallel, the message is
transmitted in each column downwards, again through any available channel. The broadcast
finishes in m+ n− 2 rounds, which matches a trivial lower bound determined by the diameter
of the grid. Note that conflicts do not arise in this strategy.

Combinations of small variations of the strategy described above will serve for the general
case in which the source is any node (i, j) in the grid. Consider the set of nodes N = {(k, `)|k =
i, ` 6= j or ` = j, k 6= i}, i.e., nodes in the same row or column as the source node, not including
the source. Let Qi denote the i-th quadrant defined by N in G, in clockwise order starting
from the upper-left quadrant (See Figure 3 (a)). We say that a node u ∈ N is a splitter if
it is connected to neighbors in two different quadrants with at least one channel in common.
Similarly, we say that the source is a vertical (resp. horizontal) splitter if it is connected to
neighbors above and below (resp. to the left and right) with at least one common channel.

Broadcasting schemes may differ depending on the availability of splitters and the relative
sizes of the quadrants. If there are no splitters or the sizes of all the quadrants are different,
then optimal strategies for broadcasting in grids in the telephone model [4] apply to our model

n

m

(1, 1)

(m, 1)

(1, n)

(m, n)

(i, j)

Q1 Q2

Q3Q4

n

m

(1, 1)

(m, 1)

(1, n)

(m, n)

(a) (b)

Figure 3: (a) Quadrants defined by the source (i, j) in a grid of size m× n. (b) Example of a broadcast
from a source in the center of the grid. The source is a horizontal splitter and there are two splitters in
row i, depicted by black discs. Arrows indicate the route of the message to any node, in particular black
arrows show the first direction of transmission from each node on the critical path of the scheme. Note
that splitters have two black arrows. The broadcasting completes in optimal (n+m− 2)/2 rounds.
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as well. For other cases, we derive optimal strategies by taking advantage of the splitters (See
Figure 3 (b) for an example), thus proving the following theorem. The proof requires a tedious
case analysis, hence we provide a sketch of it in Appendix A.

Theorem 3.2. Given an m×n grid G with k channels and a source node (i, j), where 1 ≤ i ≤ m,
1 ≤ j ≤ n, an optimal broadcast scheme can be computed in O((n+m)k) time.

4 Complete Graphs

In this section we show that the broadcasting problem in multi-channel networks is NP-hard for
complete bipartite graphs and complete graphs. Through this section, we assume there is a single
channel on each edge of concerned graphs. Using a reduction from the exact cover problem, we
show that the broadcasting problem is NP-hard for complete bipartite graphs; then we provide
a reduction from the broadcasting problem in complete bipartite graphs to the same problem in
complete graphs. The following lemma illustrates the above claim for complete bipartite graphs.
The proof appears in Appendix B.

Lemma 4.1. The broadcasting problem is NP-hard for complete bipartite graphs in the conflict-
aware multi-channel model, even in the special case when there are 2 channels and the source is
connected to all its neighbors with the same channel.

We provide a reduction from the instance described in the above lemma to the broadcasting
problem in complete graphs. The reduction uses a construction that we call a ladder bipartite
graph (See Figure 4).

Definition 1. A ladder bipartite graph with channels i, j is a balanced complete bipartite graph
with n vertices on each side. There is a one-to-one mapping between the vertices of two sides
such that the edge connecting a vertex u to its mapped vertex u′ has channel j and all the other
edges incident to u have channel i.

Lemma 4.2. Assume all vertices on one side of a ladder bipartite graph with channels i, j
have received the message. If these vertices need to inform the vertices on the other side in one
round, all the vertices should be active in that round, i.e., they need to transmit the message
either through channel i or j.

Proof. W.l.o.g., we may assume that i and j are 1 and 2 respectively. By contradiction, suppose
a vertex u is inactive, so its opposite vertex u′ should receive the message through channel 1
from another vertex v. Thus v uses channel 1 and its opposite vertex v′ should receive from
another vertex x via channel 1. Then there will be a conflict in u′ since x and v both use channel
1, and thus not all vertices can be informed in one round, which is a contradiction.

Figure 4: (left) A ladder bipartite graph with chan-
nels 1,2; grey edges are labeled with channel 1. (right) A
schematic representation of a ladder graph.
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Theorem 4.1. The broadcasting problem in the conflict-aware multi-channel model is NP-hard
for complete graphs, when there are at least 8 channels in the network.

Proof. Given an instance (G, r0) of the broadcasting problem in a complete bipartite graph in
which there are two channels and the edges adjacent to the source r0 are labeled with the same
channel, we create an instance of the broadcasting problem in a complete graph in which there
are 8 channels. Let L and R denote the two partitions of the vertices of G so that r0 ∈ R.
We create a complete graph H as follows (See Figure 5). We take two copies of L and three
copies of R−{r0} (r0 is the source in the original instance). Call these components L1, L2, and
R1, R2, R3, respectively, and also add a new vertex r as the new source. The channels of edges
connecting vertices in L1 and L2 to any of R1, R2, R3 are copied from the original bipartite
graph G. Let vertex r be connected to the 5 components via 5 different channels so that the
edges connecting r to the vertices in the same component have the same channel. Moreover, we
assign the channels to the edges connecting vertices in R1 to vertices in R2 in a way that these
edges form a ladder bipartite graph with channels 3, 4. Similarly, we set the edges between R2

and R3 to form a ladder graph with channels 5, 6, and between R1 and R3 to form a ladder with
channels 7, 8. The edges connecting vertices in L1 and L2 get channel 3 and all other edges (the
edges inside components) get arbitrary channels. We claim that there is a broadcasting scheme
for the instance (G, r0) that completes in 2 rounds if and only if there is a broadcasting scheme
for (H, r) that also takes 2 rounds.

Assume there is a broadcasting scheme for (G, r0) that completes in 2 rounds. In the first
round r0 informs the vertices of L via its single channel, so in the new instance r can inform
the vertices of L1 via the single channel that connects them (channel 1 in Figure 5). In the
second round of the broadcast in (G, r0), a subset of L informs all vertices of R. In the new
instance the same subset can inform all vertices of R1, R2, R3 (via the same edges used in the
first instance), while r informs L2 via the unique connecting channel (channel 2 in Figure 5).
Hence, the broadcast completes in 2 rounds.

L R

2,1

1

1

1

0
r

(a) The original instance in
complete bipartite graph G.

1

2

3 

4

5

3 4

5 6

7 83

1
L

2
L

2
R

1
R

3
R

r

2,1

2,1

2,1

2,1

2,1

2,1

(b) The instance of the broadcasting prob-
lem in complete graph H.

Figure 5: The broadcasting problem in complete bipartite graphs (with one channel in source incident
edges) reduces to the broadcasting problem in complete graphs. Here, a number i on the solid edge
connecting two components indicate that all edges between the vertices of the two components are labeled
with channel i. The channels of the edges between two components connected by curved blue edges are
copied from the reduced bipartite graph. Solid and dashed paired lines indicate that the components
form a ladder bipartite graph.
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Now assume that there is a broadcasting scheme for (H, r) that completes in 2 rounds. First,
we show that r cannot inform any of R1, R2, R3 in the first round. For the sake of contradiction,
suppose r informs R1 in the first round (the same reasoning holds for R2 and R3); in the second
round r cannot inform both L1 and L2. Thus, at least one vertex in R1 should use channels 1 or 2
to inform some vertices of L1 and L2. Since the edges between R1 and R2 form a ladder bipartite
graph and at least one vertex of R1 is busy informing vertices of L1 and L2, by Lemma 4.2, R1

cannot inform all vertices of R2. Thus, some vertices of R2 are to be informed by the source.
Similarly, some vertices of R3 are also left for the source to inform them. However, the source
is connected to R2 and R3 with two different channels, thus it cannot inform both in a single
round. Hence, the broadcast cannot be completed in 2 rounds and we get a contradiction. As
a result, we may assume that in the first round r informs either L1 or L2.

Assume r informs L1 in the first round (the same reasoning holds for L2). Since in the
second round r can inform at most one of the Ri’s, the other two should be informed via L1,
which implies a subset of vertices in L1 can inform all vertices in two Ri’s. The same subset
can be used for the instance (G, r0) to inform all the vertices on the right in the second round.
Therefore, there is a broadcasting scheme for (G, r0) that completes in 2 rounds.

5 Balanced Complete Graphs

As the problem is NP-hard for complete graphs, we consider a particular case where there is a
single channel on each edge and every node is connected to n−1

k nodes through edges with the
same channel. Thus, all the nodes use k different channels. We refer to this subset of complete
graphs as balanced complete graphs. Since this would restrict us from considering networks where
n is not congruent to one modulo k, we relax the condition slightly in order to include almost
balanced assignments. For a given ε ≥ 0, we require that for every node v and every channel
i, the number of nodes connected to v using channel i is at least (1 − ε)(n − 1)/k and at most
(1 + ε)(n− 1)/k. We call this family of graphs ε-balanced complete graphs.

In this setting, k corresponds to a trivial upper bound on the broadcast time. It suffices
that the source transmits once through each channel and, since the graph is complete, the
broadcasting is done. If we ignore all possible conflicts, it is easy to obtain a simple lower bound
on the transmission time. Consider a graph where at any round a node can transmit to at most
(1 + ε)(n − 1)/k nodes without conflicts. It is clear then that after the first round, we have
at most (1 + ε)(n − 1)/k + 1 nodes informed. The general formula for an upper bound for the
number of nodes that have been informed after i rounds is ((1 + ε)(n− 1)/k + 1)i, and thus we
get a lower bound for the total number of rounds to inform all nodes.

Lemma 5.1. Let ε ≥ 0. For ε-balanced complete graphs, at least dlog n/ log((1+ε)(n−1)/k+1)e
rounds are required to complete a broadcast.

When k = n − 1 and ε < 1 (i.e., each node is connected to exactly one node using each
channel) a simple greedy algorithm finds the optimal broadcast scheme and it takes dlog2 ne
rounds. This is because there are no conflicts when receiving the message, since all channels are
different. The solution matches the lower bound in Lemma 5.1. This example shows that there
are some cases where the broadcast time is not as bad as the trivial upper bound of k.

When aiming at practical applications, a more interesting question is when the number of
channels is relatively small compared to the number of nodes. Note that for k ≤ (1 + ε)(n −
1)/(
√
n−1) = O(

√
n) the lower bound in Lemma 5.1 asserts that the broadcast requires at least 2

rounds. Therefore, it would be desirable to have the property that there exists a constant C > 0

8



such that for every ε-balanced complete graph G with at most C
√
n channels, a broadcast

can always be completed in 2 rounds. Unfortunately, we can show that this is not true by
constructing a counterexample using a random assignment of channels.

For given natural numbers n and k, let G(n, k) be a complete graph with node set [n] =
{1, 2, . . . , n} in which two nodes are connected via channel c ∈ [k] with probability 1/k, inde-
pendently for each such a pair. As is typical in random graph theory, we shall consider only
asymptotic properties of G(n, k) as n→∞, where k may and usually does depend on n. We say
that an event in a probability space holds asymptotically almost surely (a.a.s.) if its probability
tends to one as n goes to infinity. The following theorem shows that we cannot hope for the
desired property when k is small enough (in particular, if k is a constant).

Theorem 5.1. Let ε > 0, c0 = minc>0(1 − ce−c) = 1 − 1/e ∈ (0, 1), f = f(n) is any function
tending to infinity together with n, k′ = k′(M) = log1/c0 n−3 log1/c0 log n−M , k′′ = log1/c0 n+f ,
and k′′′ =

√
n/(2 log n). Then, there exists a sufficiently large constant M such that the following

holds a.a.s.:

• G(n, k) is an ε-balanced complete graph for any k such that 2 ≤ k ≤ k′′′,

• Broadcasting in G(n, k) requires at least 3 rounds for any k such that 3 ≤ k ≤ k′(M),

• Broadcasting in G(n, k) requires 2 rounds for any k such that k′′ ≤ k ≤ k′′′.

The proof can be found in Appendix C. Although this is an asymptotic result, one can take n
large enough to get that with probability at least 1/2 the first and one of the other two properties
hold, and thus we get a counterexample of this order. We conjecture that there exist constants
c1, c2 > 0 such that for any ε-balanced complete graph G with c1 log n ≤ k ≤ c2

√
n/ log n

channels, a broadcast can always be completed in 2 rounds. Since a random assignment of
channels seems to be a natural candidate for a counterexample, the fact that the conjecture
holds a.a.s. for G(n, k) strongly supports it.

Moreover, since there are ε-balanced complete graphs with bounded number of channels
(k = O(1)) in which broadcasting requires at least 3 rounds, it is important to be able to design
ε-balanced complete graphs (or even, balanced complete graphs) that can be broadcasted in 2
rounds. Next we present a construction algorithm together with a broadcasting scheme that
completes the broadcast in 2 rounds. Note that since the topology is fixed (a complete graph),
finding a construction algorithm is equivalent to finding a channel assignment. Our channel
assignment algorithm relies on the following known result in graph theory for edge coloring.

Lemma 5.2. [14, problem 16.5, p. 133] The minimum number of colors required for an edge
coloring of a complete graph Kn is n− 1 if n is even, and n otherwise.

A constructive proof of this lemma leads to the following edge-coloring algorithm. When
n is odd, assign the color ((i + j) mod n) + 1 to each edge e = (vi, vj) with vi, vj ∈ V =
{v1, v2, . . . , vn} (an edge-coloring for K3 is shown in Figure 6(b)). We say that a node vi uses a
color c if there is an edge (vi, vj), i 6= j colored with c. For n even, the graphKn−1 is colored using
the above method. Then, the remaining vertex vn is added and each edge e = (vi, vn) is colored
with the color not used by vi (See an edge-coloring for K4 in Figure 6(a)). Note that coloring an
edge e and assigning a channel to e are equivalent terms that define the same action in different
problems. Thus, from now on we shall refer Lemma 5.2 using the terminology defined for our
problem. Relying on this result, we obtain the following theorem (our construction algorithm
follows immediately from its constructive proof).
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(a) Base case:
GB = K4.

(b) Inductive
step: GI = K3.

(c) First two iterations
(t = 2) of the construction.

Figure 6: Construction example using K4 as base case and K3 in the inductive step.

Theorem 5.2. Given an odd number of channels k and a positive integer t, it is possible to
construct a balanced complete graph with kt+ 1 nodes (i.e., Kkt+1).

Proof. We prove the theorem by induction on t. For our construction, we use a more restricted
hypothesis as follows. Given k and t as in the statement of the theorem, we can construct a
complete graph with kt + 1 nodes that satisfies the following properties: (i) the vertices of the
graph can be classified in k classes with t vertices in each class (and one root vertex in no class),
(ii) vertices in the same class are all connected with one channel, and are connected to the root
with that same channel, and (iii) for each pair of classes, all edges connecting vertices in the two
classes are connected with the same channel. It is not hard to see that proving this hypothesis
proves the theorem.

Let GB = Kk+1 be the base case. As we define k to be odd, GB is a complete graph with
an even number of nodes. Then, we can assign k different channels to GB in such a way that
no two edges adjacent to the same node use the same channel (by Lemma 5.2). Note that each
node in GB uses a different channel to connect with the other k nodes. Let us call the last node
added by the coloring given by Lemma 5.2 the root. We assign each non-root node to a class
defined by the channel that connects it to the root. In Figure 6(a), for example, the root is
the center node, and we name each non-root node with one of the 3 channels (black, gray, and
dashed).

For the inductive step, assume Gt is a complete graph with kt + 1 nodes satisfying the
desired properties. We add k new nodes to Gt to form Gt+1. For this sake, we connect all
vertices of Gt to the vertices of a complete graph GI = Kk. Thus Gt+1 is a complete graph with
kt + 1 + k = k(t + 1) + 1 vertices. Since k is odd, we can assign k different channels to GI in
such a way that no two edges adjacent to the same node use the same channel (by Lemma 5.2).
By construction, each node in GI uses k−1 different channels. We assign each node to the class
corresponding to the channel it does not use. Thus Gt+1 satisfies (i).

Let class(c) be the set of nodes in Gt+1 that belong to the class corresponding to channel
c. We assign channel c to each edge (u, v) such that u, v ∈ class(c), and also to each edge
(u, root), ∀u ∈ class(c). Thus Gt+1 satisfies (ii), and all the nodes in the same class are intercon-
nected and connected with the root using the channel that defines the class. The remaining step
is to assign channels to edges with end-points in different classes. Consider two classes c1 and
c2. By property (iii) all edges in Gt connecting nodes in these classes are labeled with the same
channel. We assign this channel to all edges (u, v) such that u ∈ class(c1) and v ∈ class(c2),
with u ∈ GI and v ∈ Gt. This step is repeated for all pairs of classes. Finally, observe that
since the color assignment for GB given by Lemma 5.2 builds on the assignment for GI , for any
pair of classes, edges connecting vertices in these classes have the same color in both GB and
GI . Thus for all pairs of classes c1 and c2, the edge (u, v) with u, v ∈ GI and u ∈ class(c1) and
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v ∈ class(c2) has the same color of the edges in Gt connecting vertices in class(c1) to vertices
in class(c2). Hence Gt+1 satisfies (iii), completing the proof.

Figure 6 shows an example of the construction algorithm with k = 3 channels (thus, a
balanced complete graph with 3t + 1 nodes). K4 with 3 different channels is used as the base
case in the inductive construction. The graph used in the inductive steps is a K3 designed using
a channel assignment with 3 different channels. The algorithm iteratively adds K3 at each step.
Figure 6(c) shows how the construction algorithm connects GI and GB to obtain the final graph.

We now analyze the number of rounds required to broadcast in a graph constructed with
our algorithm.

Theorem 5.3. Let G be a complete graph with k channels and at least k2 − 2k + 1 nodes
constructed according to the inductive algorithm described in Theorem 5.2. Then, a broadcast in
G from any node can be completed in 2 rounds.

Proof. First, consider the case when the source of the broadcast is the root. In the first round,
it informs all the nodes in one class (using for example channel 1). The number of nodes in the
graph guarantees that there are at least k− 2 nodes in that class. Thus, after the first round, at
least k − 1 nodes are informed. In the second round, it suffices that the root transmits through
a channel different from the one used in round 1 (e.g., channel 2) to inform a new class, and
other k − 2 nodes among the informed ones take care of the remaining k − 2 classes. Note that
conflicts do not occur because all the nodes informed in the first round belong to the same class.

When the source is not the root, in the first round the source transmits through the channel
that defines its class. This results in at least k − 1 informed nodes (including the source and
the root). In the second round, the source transmits through a different channel to inform one
class, while other k− 2 nodes among the informed ones take care of the remaining k− 2 classes
(one of those nodes may be the root). Note that conflicts do not occur even when the root is
transmitting (no other node is transmitting to the same class).

The broadcasting scheme follows from this constructive proof. Notice also that the channel
assignment together with the broadcasting scheme constitute a fault-tolerant system. The net-
work may be much larger than k2−2k+1 nodes, and this broadcast scheme will still work when
some of the nodes fail. More precisely, if the root and k − 2 nodes in each class do not fail, a
message can be broadcasted to all the nodes that are working properly in 2 rounds.

Finally, we prove that our channel assignment is also efficient when several messages need
to be broadcasted from different sources at the same time. Specifically, up to k messages can
be broadcasted simultaneously, and all the broadcasts complete in 3 rounds. We formalize this
in Theorem 5.4. The fault-tolerance property that holds for the broadcast of one message holds
as well for this scheme. The proof appears in Appendix D.

Theorem 5.4. Let G be a complete graph with k channels and at least k2 − 2k + 1 nodes
constructed according to the inductive algorithm described in Theorem 5.2. Then, a broadcast in
G of k messages from any k different nodes can be completed in 3 rounds.

6 Conclusions

We studied the broadcasting problem in conflict-aware multi-channel networks, and presented
positive and negative results for various network topologies. These include polynomial time
algorithms that give optimal broadcast schemes for grids, and also for trees when there is a
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single channel on each edge. We proved that the problem is NP-hard for trees in general case,
and also for complete graphs even in the restricted case with only one channel on each edge.
Moreover, we studied balanced complete graphs as a subclass of complete graphs in which
each node is connected to approximately same number of nodes with each channel. In this
setting, we proposed a channel assignment that results in broadcast schemes that complete in
two rounds, which is optimal for non-trivial networks. Besides, we proved that broadcasting in
some balanced complete graphs requires at least three rounds, thus justifying the significance
of our construction. The construction results in fault-tolerant networks that enable efficient
broadcasting of multiple messages simultaneously.
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A Proof (sketch) of Theorem 3.2

Assume first that no node is a splitter in G for the given source (i, j). In this case, lower and
upper bounds for broadcasting coincide with the ones in the telephone model. Broadcasting
in this model for grid graphs was studied in [4], in which broadcast times are shown for any
location of the source. In the case of no splitters, the following simple strategy achieves the lower
bounds in [4]. Let |Qi| denote the diameter of quadrant i, which equals the minimum distance
from (i, j) to the corner of Qi. Let i1, i2, i3, i4 be indices such that |Qi1 | ≥ |Qi2 | ≥ |Qi3 | ≥ |Qi4 |.
The message is transmitted from (i, j) along row i in the direction corresponding to the corner
of Qi1 , and simultaneously (starting in the second round) in the same row but in the opposite
direction. When an end node of the row is reached, the nodes in row i between the source and the
end node start informing the nodes in their corresponding columns, first in the direction of the
quadrant with the largest diameter. Let t(Qi) denote the time that it takes to inform all nodes
in quadrant Qi. This strategy achieves t(Qi1) = |Qi1 |, t(Qi2) ≤ |Qi1 |+ 1, t(Qi3) ≤ |Qi1 |+ 1, and
t(Qi4) ≤ |Qi1 |+ 2.

Broadcasting times may differ with respect to the telephone model when there are splitters.
Note, however, that the strategy above is optimal even when there are splitters if the sizes of
all quadrants are different (i.e., the source is not in the middle row or column): in this case
t(Qi) ≤ |Qi1 | for all i = 1 . . . 4, and |Qi1 | is a lower bound.

Splitters make a difference in the case when the source is in the middle row or middle column,
or both. For the sake of brevity, we describe here only the case in which the source is in the
middle of the grid. Assume that the source is at (i, j) = ((m + 1)/2, (n + 1)/2), and thus all
quadrants have the same diameter d = |Q1|.

The following strategy takes advantage of splitters to reduce the broadcasting time by trans-
mitting the message simultaneously through the critical path of two quadrants. Suppose the
source is a splitter. If it is a vertical splitter but not a horizontal one, we start informing nodes in
column j above and below simultaneously. If it is only a horizontal splitter, we inform nodes in
row i, to the left and right. If it is both, we pick an orientation based on other splitters: inform
vertically if there is at least one splitter between Q1 and Q2, and one between Q3 and Q4, and
inform horizontally otherwise. If there are no splitters, just like before, when messages reach
the end of the row, each node in a row informs nodes above and below in their corresponding
column. Suppose, for example, that the message reaches a splitter (i, j′) dividing Q2 and Q3.
Nodes on row i that have the message act as if the message had reached the end of the row:
they inform above and below in their column in two rounds. The splitter informs (i− 1, j′) and
(i+ 1, j′) in one round. When the message reaches the beginning and end of column j′, each of
the nodes in the column informs to the right, completing the broadcast in quadrants Q2 and Q3

at the same time (See Figure 3 (b)). The broadcast is analogous for other splitters.
It is not hard to see that if there is at least one splitter in each of the directions in which the

source informs, then the broadcasting time is d, and it is d + 1 otherwise. These are optimal.
To see this, note that nodes in N (i.e., nodes in the same row or column as the source) are in
the critical path from the source to two corners. Since at least one of these nodes must send
messages to neighbors in different quadrants, if this cannot be done simultaneously one of the
quadrants will suffer a delay of one round.

Suppose now that the source is not a splitter. The source informs vertically in column j if
there is at least one splitter in this column, and horizontally otherwise, sending the message first
in the direction opposite of the splitter (or any if both directions have splitters). For example,
if the only splitter is in row i between quadrants Q2 and Q3, the source informs first to its left
neighbor and then to its right neighbor. The broadcast is completed in d + 1 rounds, which is
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with neighborhood.

again optimal: since the source is not a splitter, none of the nodes of two quadrants will have
received a message in the first round. This inevitably adds one round to the lower bound of d.

The same arguments can be used to show that the broadcast can be completed optimally
in cases when the source is in the middle row or column but not both. Note as well that the
strategies above also apply in the cases when there are two or three empty quadrants. Computing
the optimal scheme for each case requires calculating the quadrants’ diameters (which takes
constant time), and possibly searching for splitters, which can be done in O((n+m)k) time.

B Proof of Lemma 4.1

We use a reduction from the exact cover problem. To simplify the proof, we define exact cover
with neighborhood as a variant of exact cover. We show that exact cover reduces to exact
cover with neighborhood and then show a reduction from exact cover with neighborhood to
the broadcasting problem in complete bipartite graphs. Recall that the exact cover problem is
defined over bipartite graphs; given a bipartite graph in which the vertex set is partitioned into
left and right subsets, the exact cover problem asks if there is a subset S of vertices on the left
such that all vertices on the right are connected to exactly one of the vertices in S. This problem
is a classical NP-hard problem [5].

Definition 2. The exact cover with neighborhood problem is a decision problem, which given
a bipartite graph G = (V,E) [V = L∪R, where L and R are vertices on the left and right sides
respectively] asks if there exists a vertex u ∈ L and also a subset X ⊆ L, u /∈ X, such that all
neighbors of u are exactly covered by X, i.e., any neighbor of u is connected to exactly one vertex
in X (See Figure 7).

Lemma B.1. Exact cover with neighborhood is NP-hard.

Proof. We show a reduction from the exact cover problem. Given a bipartite graph G as an
instance of exact cover, let L = {a1, a2, . . . , an} and R = {b1, b2, . . . , bm} be the vertices of G
on the left and right sides, respectively. We create a bipartite graph H as follows: start with a
copy of G and add n vertices x1, x2, . . . , xn on the right. Connect each xi to all vertices on the
left except ai. Moreover, add a single vertex y on the left, and connect it to all bi’s and none of
xi’s (See Figure 8).
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We claim that there is an exact cover for G if and only if there is an exact cover with
neighborhood for H. Assume there is an exact cover for G, i.e., there is a subset of L that
exactly covers all members of R. Note that the members of R are exactly the neighbors of y; so
all neighbors of y are covered and we are done.

Now assume there is an exact cover with neighborhood for H, so there is a vertex u such
that all its neighbors on the right are exactly covered by some other vertices on the left. We
claim that y is the only vertex with this property. For the sake of contradiction, suppose that
at (t ≤ n) is such a vertex. All xi’s except xt are connected to at, hence they should be covered
by some of the vertices in L− {at, y} (note that y is not connected to xi’s). Moreover, at most
one of the vertices in L − {at, y} can be selected since any two vertices of this set will conflict
in n − 2 of xi’s. Let aα (α 6= t) be the selected vertex, i.e., aα should cover all xi’s but xt. In
particular aα should cover xα, which is not possible as they are not connected by definition. So
y is the vertex with all its neighbors covered by other vertices on the left. Since y is connected
to all vertices of G on the right, there is an exact cover for G, which completes the proof.

Next, we show a reduction from the exact cover with neighborhood problem to broadcasting
in complete bipartite graphs. Given an instance of exact cover with neighborhood, which is a
bipartite graph H = (L,R), we create a complete bipartite graph with a single channel on each
edge as follows. We start with a copy of H with channel 1 on all edges and add two vertices r
and v on the right side. In order to form a complete bipartite graph G, we add all missing edges
and assign channel 2 to them (See Figure 9). Also, let r be the source in an instance of the
broadcasting problem defined over G. We claim that there is an exact cover with neighborhood
for H if and only if there is a broadcasting scheme that completes in 2 rounds for G.

Assume there is a subset X ⊆ L that exactly covers all neighbors of a vertex u ∈ L. In the
broadcast instance, in the first round r informs all vertices on the left (using channel 2). In the
second round, the vertices in X use channel 1 to inform the neighbors of u (there will be no
conflict by definition of exact cover), and u uses channel 2 to inform other vertices including v.
Hence, the broadcast completes in 2 rounds.

Now assume there is a broadcasting scheme that completes in 2 rounds. So v receives the
message in round 2 as it is not connected to r. Also, since all incident edges of v are labeled with
channel 2, there is exactly one vertex on the left that can be used to transmit on channel 2 in
round 2, otherwise there will be a conflict in v. Let u be the vertex on the left that uses channel
2 to inform v and its own non-neighbors in H. The other vertices on the right are neighbors of
u in H, which receive the message via some other vertices on the left. This set of vertices forms
an exact cover for neighbors of u in H.

C Proof of Theorem 5.1

In this section, we will use the following version of the Chernoff bound (See for example The-
orem 2.8 [7]). Let Z be a random variable that can be expressed as a sum Z =

∑n
i=1 Zi of

independent random indicator variables where Zi ∈ Be(pi) with (possibly) different pi = P(Zi =
1) = EZi. Then the following holds for t ≥ 0:

P(Z ≥ EZ + t) ≤ exp
(
− t2

2(EZ + t/3)

)
,

P(Z ≤ EZ − t) ≤ exp
(
− t2

2EZ

)
.
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Figure 9: The exact cover with neighborhood instance and the resulting broadcasting scheme
(the bold edges have channel 1 and the rest have channel 2).

The proof that G(n, k) is an ε-balanced complete graph a.a.s. follows immediately from the
Chernoff bound. Note that for a given node v and channel c, we expect (n − 1)/k = Ω(

√
n)

neighbors connected through channel c. Hence, with probability 1−o(n−2) the number of edges
of this type is n/k + O(

√
n/k log n) = (1 + o(1))n/k. We get that a.a.s. for every node v and

every channel c the number of edges adjacent to v with channel c assigned is (1+o(1))nk . Hence,
the property holds for any ε > 0.

Let 3 ≤ k ≤ k′. Now, we will show that broadcasting in G(n, k) requires at least 3 rounds
a.a.s. Fix a node v that transmits at the first round, nodes from the set X receive the message
(|X| = (1 + o(1))n/k). Now, fix nodes that are going to transmit the message during the second
round, and assign channels to them. In particular, yi nodes of X use channel i ∈ [k].

We have two possibilities to consider: a) v transmits during the second round, and b) v does
not transmit during the second round. For a given sequence (y1, y2, . . . , yk), the total number
of configurations to consider (that is, the number of broadcasting schemes) is at most

nk(k + 1)
∏
i

(
n

yi

)
≤ n3+

∑
i yi .

(There are n choices for v, k choices for a channel used by v at the first round, k + 1 choices
for a behavior of n in the second round. Finally,

(
n
yi

)
nodes transmit on channel i at the second

round.)
Fix any configuration of nodes of X sending the message during the second round. Let u be

a node in V \ (X ∪ {v}). The probability that node u does not receive the message from X is

k∏
i=1

(
1− yi

k

(
1− 1

k

)yi−1
)
.

(We select one node that sends the message to u via channel i (term yi). The probability that
the edge from this node to u has label i is 1/k. Nobody else sending on channel i at this round
can reach u (term

(
1− 1

k

)yi−1).) So in case a) we expect to see

(1 + o(1))
(

1− 1
k

)
n

k∏
i=1

(
1− yi

k

(
1− 1

k

)yi−1
)

nodes not informed after two rounds. Case b) is slightly more complicated but it is easy to
provide a lower bound on the number of nodes not receiving the message. Some of the nodes
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receiving message from v (via channel i) at the second round can have conflicts from nodes of
X sending on the same channel (unless yi = 0). Therefore, perhaps more nodes do not get the
message but, in any case, we expect to see at least

(1 + o(1))
(

1− 2
k

)
n

k∏
i=1

(
1− yi

k

(
1− 1

k

)yi−1
)

nodes not informed after two rounds.
If k ≥ 3 is a constant, then clearly a positive fraction of nodes remain uniformed after two

rounds a.a.s., and we are done. Suppose then that k = k(n) grows together with n. Due to the
symmetry, the probability is minimized when yi = y/k + O(1) (y =

∑
i yi) for all values i, and

so the probability of not being informed is at least

(1 + o(1))
(

1− (1 +O(k−1))
y

k2
exp

(
− y

k2

))k
.

If y/k → c, then this is asymptotic to Θ((1− ce−c)k) and so we get that the probability of being
not informed is of order at least ck0. (Recall that c0 = minc>0(1− ce−c) = 1− 1/e.) Therefore,
the expected number of nodes not informed is at least

(1 + o(1))(1− 2/k)nΩ(ck0) ≥ C(M) log3 n,

where C(M) is a function of M that grows to infinity together with M . (Recall that k ≤
log1/c0 n − 3 log1/c0 log n −M .) It follows from the Chernoff bound that the probability that
every node is informed is at most exp(−C(M)(log3 n)/2).

Since the total number of configurations with y ≤ 2k2 is at most

ykn3+y ≤ exp((3 + k + y) log n) ≤ exp(O(log3 n)),

we can use the union bound (with C(M) large enough) to get that a.a.s. there is no broadcasting
scheme that informs every node after two rounds, provided that y ≤ 2k2 nodes are active at the
second round. For y > 2k2 we use the fact that the probability of u not receiving a message
via a random channel i is not (1 + o(1))c0 anymore but slightly larger (for k2/y = o(1) it is, in
fact, tending to one). It is straightforward to check that there is no chance to have more active
nodes (y > 2k2) in the two-round broadcasting scheme.

Suppose now that k′′ ≤ k ≤ k′′′. We will show that this time there is a broadcasting scheme
that informs all nodes in two rounds a.a.s. Choose any node v and any channel c. At the first
round, v transmits on channel c, X nodes are informed (|X| = (1 + o(1))n/k). The probability
of receiving a message at the second round is maximized when exactly k nodes transmit on each
of k channels. However, this is not possible for large values of k. Therefore, we need to consider
three sub-cases depending on the range for k.

Suppose first that k ≤ 1
2n

1/3. Since (2 + o(1))n2/3 nodes are informed after the first round,
there is no problem with desired assignment. Choose any k2 nodes of X, partition them such
that exactly k nodes transmit on each channel. The expected number of nodes not informed
after the second round is

O(n)
(
1− (1 +O(k−1))/e

)k = O(nck0) = o(1),

and so a.a.s. every node receives the message by Markov’s inequality.
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Suppose now that (1/2)n1/3 < k ≤ n2/5. This time all nodes of X transmit the message:
(1 + o(1))n/k2 nodes transmit on each channel. The expectation is now

O(n)

(
1− (1 + o(1))

n/k2

k

(
1− 1

k

)n/k2
)k
≤ exp

(
log n−O(n/k2)

)
= o(1).

Finally, for n2/5 < k ≤ k′′′, the calculations can be done slightly more carefully to get that
the expectation is

O(n)
(

1− (1 + o(1))
n/k2

k

)k
≤ exp

(
log n− (1 + o(1))

n

k2

)
= o(1).

The result holds by Markov’s inequality, as before.

D Proof of Theorem 5.4

First, consider the case when the k sources of the broadcast belong to different classes. Let mi

be the message that must be broadcasted from a source node in class(ci). Initially, each source
transmits through the channel that defines its class. Therefore, after the first round all the nodes
in class(ci) have been informed of message mi. Note that the root receives the k messages in the
first round. W.l.o.g., let us define a total order in the classes using the name of the channel that
defines the class (i.e., class(c1) ≺ . . . ≺ class(ck)). We say that class(ci) transmits a message to
class(cj) if a node in class(ci) transmits through the channel that connects it with all the nodes
in class(cj). In the second round, each class(ci) transmits the message mi to the k − i higher
classes. Note that k − i nodes in class(ci) transmit in this second round. As the graph has at
least k2 − 2k + 1 nodes, every class has at least k − 2 nodes, and class(c1) can use the root to
complete the k − 1 necessary transmissions. After the second round, all the nodes in class(ci)
have been informed of messages m1, . . . ,mi. In the third round, each class(ci) transmits mi to
the i− 1 lower classes. Analogously to the previous round, i− 1 nodes in class(ci) transmit in
this third round, and the number of nodes in the graph guarantees that the class have enough
nodes for all classes but ck, which uses the root to complete the k − 1 necessary transmissions.
Observe that the order in the transmissions avoids conflicts in the second and third round.

In general, the k sources may not be distributed one in each class. For each class with more
than one source we arbitrarily choose one of the sources and call it a proper source. All other
sources in the class are non-proper. A class without any source is called orphan. Note that
there are as many orphan classes as non-proper sources. In the first round, each proper source
transmits through the channel that defines its class, thus informing all the nodes in its class, and
each non-proper source adopts one of the orphan classes (i.e., it transmits through the channel
that connects it with all the nodes in the orphan class). After this round the situation is similar
to the case where each source belongs to one class. The main difference is that the root has not
been informed of any of the messages broadcasted from non-proper sources. We now define a
total order among classes by choosing any of the classes with a proper source as the first class,
and we assign any arbitrary order to the rest of the classes. Note that there is at least one
proper source. Then, the second and third rounds are analogous to the case in which each class
has one source, with the difference that in the second round one of the nodes of each adopted
class informs the root. Note that the first class is the only one that needs to transmit through
all the channels in the second round, which is why we choose a non-orphan class to be the first
class. The special case where the root is one of the sources does not imply any difference in the
algorithm because the root can be considered as a proper source of one of the orphan classes.
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