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Abstract. In this paper, a spatial preferential attachment model for
complex networks in which there is non-uniform distribution of the nodes
in the metric space is studied. In this model, the metric layout represents
hidden information about the similarity and community structure of the
nodes. It is found that, for density functions that are locally constant, the
graph properties can be well approximated by considering the graph as a
union of graphs from uniform density spatial models corresponding to the
regions of different densities. Moreover, methods from the uniform case
can be used to extract information about the metric layout. Specifically,
through link and co-citation analysis the density of a node’s region can be
estimated and the pairwise distances for certain nodes can be recovered
with good accuracy.
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1 Introduction

There has been a great deal of recent interest in modelling complex networks,
a result of the increasing connectedness of our world. The hyperlinked structure
of the Web, citation patterns, friendship relationships, infectious disease spread,
these are seemingly disparate collections of entities which have fundamentally
very similar natures.

Many models of complex networks—such as copy models and preferential
attachment models—have a common weakness: the ‘uniformity’ of the nodes;
other than link structure there is no way to distinguish the nodes. One family of
models which overcomes this deficiency is spatial (or geometric) models, wherein
the nodes are embedded in a metric space. A node’s position—especially in
relation to the others—has real-world meaning: the character of the node is
encoded in its location. Similar nodes are closer in the space than dissimilar
nodes. This distance has many potential meanings: in communication networks,
perhaps physical distance; in a friendship graph, an interest space; in the World
Wide Web, a topic space. As an illustration, a node representing a webpage on
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pet food would be closer in the metric space to one on general pet care than to
one on travel.

The Spatial Preferred Attachment Model [1], designed as a model for the
World Wide Web, is one such spatial model. Indeed, as its name suggests, the
SPA Model combines geometry and preferential attachment. Setting the SPA
Model apart is the incorporation of ‘spheres of influence’ to accomplish prefer-
ential attachment: the greater the degree of the node, the larger its sphere of
influence, and hence the higher the likelihood of the node gaining more neigh-
bours. The SPA model produces scale-free networks, which exhibit many of the
characteristics of real-life networks (see [1,4]). In [9], it was shown that the SPA
model gave the best fit, in terms of graph structure, for a series of social networks
derived from Facebook.

As the motivation behind spatial models is the ‘second layer of meaning’—the
character of the nodes as represented by their positions in the metric space—
we hope to uncover this layer through examination of the link structure. In
particular, estimating the distance between nodes in the metric space forms the
basis for two important link mining tasks: finding entities that are similar—
represented by nodes that are close together in the metric space—and finding
communities—represented by spatial clusters of nodes in the metric space. We
show how a theoretical analysis of a spatial model can lead to reliable tools to
extract the ‘second layer of meaning’.

The majority of the spatial models to this point have used uniform random
distribution of nodes in the space. However, considering the real-world networks
these models represent, this concept is impractical: indeed, on a basic level, if
the metric space represents actual physical space, and the nodes people, then we
note that people cluster in cities and towns, rather than being uniformly spread
across the land. More abstractly, there are more webpages on a popular topic,
corresponding to a small area of our metric space, than for a more obscure topic.
The development of spatial network models naturally then begins to incorporate
varying densities of node distribution: both ‘clumps’ of higher/lower density, as
well as gradually changing densities, are both possibilities.

Of the more important goals is that of community recognition: the discovery
and quantification of characteristically (semantically) similar nodes.

In this work we generalize the SPA model to non-homogeneous distribution
of nodes within the space. We assume very distinct regions of different densities,
‘clusters’. We find they behave almost as independent SPA Models of parameters
derived from the densities. Many earlier results from the SPA Model then trans-
late easily to this asymmetric version and we begin the process of uncovering
the geometry using link analysis.

1.1 Background and Related Work

Efforts to extract node information through link analysis began with a heuristic
quantification of entity similarity: numerical values, obtained from the graph
structure, indicating the relatedness of two nodes. Early simple measures of
entity similarity, such as the Jaccard coefficient [12], gave way to iterative graph
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theoretic measures, in which two objects are similar if they are related to similar
objects, such as SimRank [10]. Many such measures also incorporate co-citation,
the number of common neighbours of two nodes, as proposed in the paper by
Small [13].

The development of graph models, in particular spatial models—as explored
in [3] using thresholds, in combination with protean graphs [2] and with preferen-
tial attachment [5,7]—added another dimension to node information extraction.
For example, in [6], the authors make inferences on the social space for nodes
in a social network, using Bayesian methods and maximum likelihood. But in
particular, the authors’ previous paper, [8], used common neighbours in a spa-
tial model of the World Wide Web [1] to explore the underlying geometry and
quantify node similarity based on distance in the space. In this paper, we draw
heavily from [4], which includes further results on the SPA model, and in partic-
ular from [8] and extend its results to a generalization that allows us to overcome
the reliance on uniform random distribution of nodes in the space. Non-uniform
distributions have also been explored in [11, 14], as we move to more realistic
models.

1.2 The Asymmetric SPA Model

We begin with a brief description of our Asymmetric SPA model. The model
presented here is a generalization of the SPA model introduced in [1], the main
difference being that we allow for an inhomogeneous distribution of nodes in the
space.

Let S be the unit hypercube in Rm, equipped with the torus metric derived
from the Euclidean norm, or any equivalent metric. The nodes {vt}nt=1 of the
graphs produced by the SPA model are points in S chosen via an m-dimensional
point process. Most generally, the process is given by a probability density func-
tion ρ; ρ is a measurable function such that

∫
S
ρdµ = 1. Precisely, for any

measurable set A ⊆ S and any t such that 1 ≤ t ≤ n, P(vt ∈ A) =
∫
A
ρdµ.

In fact, we will restrict ourselves to probability functions that are locally
constant. Precisely, we assume that the space S = [0, 1)m is divided into km equal
sized hypercubes, where k is a constant natural number. Each hypercube is of
the form Ij1×Ij2×· · ·×Ijm (0 ≤ j1, j2, . . . , jm < k), where Ij = [j/k, (j+1)/k).
Note that any density function ρ can be approximated by such a locally constant
function, so that this restriction is justified.

To keep notation as simple as possible, we assume that each hypercube is
labelled R`, 1 ≤ ` ≤ km. Let ρ` be the density of R`, so the density function
has value ρ` on R`. For any node v, let R(v) be the hypercube containing v,
and let ρ(v) be the density of R(v). Clearly, every hypercube has volume k−m.
Then the probability that a node vt, introduced at time t, falls in R` equals
q` = ρ`k

−m, and the expected number of points in R` equals ρ`k
−mn. It is easy

to see that
∑
` q` = 1. Thus we model the point process as follows: at each time

step t, one of the regions is chosen as the destination of vt; region R` is chosen
with probability q`. Then, a location for vt is chosen uniformly at random from
R`.
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The SPA model generates stochastic sequences for graphs (Gt : t ≥ 0) with
edge set Et and node set Vt ⊆ S. The in-degree of a node v at time t is given by
deg−(v, t). Likewise the out-degree is given by deg+(v, t). The sphere of influence
of a node v at time t is defined as the ball, centred at v, with total volume

|S(v, t)| = A1 deg−(v, t) +A2

t
,

where A1, A2 > 0 are given parameters. If (A1 deg−(v, t) + A2)/t ≥ 1, then
S(v, t) = S and so |S(v, t)| = 1. We impose the additional restriction that
pA1 maxj ρj < 1; this avoids regions becoming too dense. This property will be
always assumed. The generation of a SPA model graph begins at time t = 0 with
G0 being the null graph. At each time step t ≥ 1 (defined to be the transition
from Gt−1 to Gt), a node vt is chosen from S according to the given spatial
distribution, and added to Vt−1 to form Vt. Next, independently, for each node
u ∈ Vt−1 such that vt ∈ S(u, t − 1), a directed link (vt, u) is created with
probability p, p ∈ (0, 1) being another parameter of the model.

Let δ(v) be the distance from v to the boundary of R(v). Let r(v, t) be the
radius of the sphere of influence of node v at time t. So if r(v, t) ≤ δ(v), then
S(v, t) is completely contained in R(v) at time t. We see that

r(v, t) = (|S(v, t)|/cm)
1/m

=

(
A1 deg−(v, t) +A2

cmt

)1/m

,

where cm is the volume of the unit ball; for example, in 2-dimensions with the
Euclidean metric, c2 = π.

Our goal is to investigate typical properties of a graph Gn on n nodes, and
to use these to infer the spatial layout of the nodes. As typical in random graph
theory, we shall consider only asymptotic properties of Gn as n → ∞. We say
that an event in a probability space holds asymptotically almost surely (a.a.s.)
if its probability tends to one as n goes to infinity.

2 Graph properties of the SPA model.

In the Asymmetric SPA model with a locally constant density function, the
probability of an edge forming from a new node vt to an existing node v at time
t equals

P((vt, v) ∈ E(Gn)) = p

∫
S(v,t)

ρdµ = p
∑
`

ρ` |S(v, t) ∩R`|.

Thus, the stochastic process of edge formation in the Asymmetric SPA model
is bounded below by the process in which the edge probability is governed by
pρmin, and bounded above by that with pρmax, where ρmin and ρmax are, re-
spectively, the smallest and the largest densities occurring. The bounds on the
link probability P((vt, v) ∈ E(Gn)) lead to bounds on the expected value of the
degree.
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Theorem 1 Let ω = ω(n) be any function tending to infinity together with n.
The expected in-degree at time t of a node vi born at time i ≥ ω is given by

(1+o(1))
A2

A1

(
t

i

)pρminA1

−A2

A1
≤ E(deg−(vi, t)) ≤ (1+o(1))

A2

A1

(
t

i

)pρmaxA1

−A2

A1
.

In the analysis of the original SPA model, we find that nodes born quite early
have their spheres of influence typically shrinking rapidly, and nodes born late
start with small spheres of influence. A node would have to be quite close to the
boundary of its region with another for the effect of any other region to be felt.
It seems reasonable to expect that the graph formed by nodes in a region R`
with local density ρ` behaves like an independent SPA model of density ρ`.

To be specific, assume that nodes in the SPA model do not arrive at fixed
time instances t, but instead arrive according to a homogeneous Poisson process
with rate 1. (This will not significantly change the analysis.) Then, the process
inside a region R with density ρ will behave like a SPA model with the same
parameters A1, A2 and p, but with points arriving according to a Poisson process
with rate ρ. This means that in each time interval we expect ρ points to arrive,
and the expected time interval between arrivals equals 1/ρ. If we use vt to denote
the t-th node arriving, then the arrival time a(t) of vt is approximately t/ρ, and
thus the volume of the sphere of influence of an existing node v at the time that
vt is born equals

|S(v, a(t))| = A1 deg−(v, a(t)) +A2

a(t)
≈ ρA1 deg−(v, a(t)) + ρA2

t
.

Thus, in the analysis of the degree of an individual node, we expect a node v
in the asymmetric SPA model to behave like a node in the original SPA model
with parameters ρ(v)A1, ρ(v)A2 instead of A1, A2, where the degree of node v
at time t in the Asymmetric SPA model corresponds to the degree of a node at
time a(t) in the corresponding SPA model. The following theorems show that
this is indeed the case.

Theorem 2 Let ω = ω(n) be any function tending to infinity together with n.
The expected in-degree at time t of a node vi born at time i ≥ ω log n, with
δ(v)� (log n/i)1/m is given by

E(deg−(vi, t)) = (1 + o(1))
A2

A1

(
t

i

)pρ(v)A1

− A2

A1
.

Theorem 3 Let ω = ω(n) be any function tending to infinity together with n,
and let ε > 0. The following holds a.a.s. For every node v for which deg−(v, n) =
k = k(n) ≥ ω log n and for which

δ(v) ≥ (1 + ε)

(
A1k +A2

cmn

)1/m

,
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it holds that for all values of t such that max{tv, Tv} ≤ t ≤ n,

deg−(v, t) = (1 + o(1))k

(
t

n

)pρ(v)A1

.

Times Tv and tv are defined as follows:

Tv = n

(
ω log n

k

)pρ(v)A1

, tv = (1 + ε)

(
A1k

δmcmnpρ(v)A1

) 1
1−pρA1

.

The statement of the theorem is rather technical, so we lay it out conceptually:

– the condition on δ(v) ensures that at time n, S(v, n) is completely contained
in R(v) (the factor of (1 + ε) gives some extra room for argument),

– time Tv is the time node v has ω log n neighbours, provided that the process
behaves as we expect,

– time tv is the time when the sphere of influence has shrunk to the point where
it became completely contained in R(v), provided the process behaves well
(again, with extra room due to the factor (1+ε)). This occurs at the moment
when the expected radius of the sphere of influence is smaller than δ(v).

The implication of this theorem is that once a node accumulates ω log n
neighbours and its sphere of influence has shrunk so that it does not intersect
neighbouring regions, its behaviour can be predicted with high probability until
the end of the process, and is completely governed by its region, and no others.

We note that if max{Tv, tv} = tv for a node v, then at time Tv—the time v
first reaches in-degree ω log n—its sphere of influence extends beyond the region
of v. However, since a.a.s. no node has degree ω log n at time O(ω log n), it must
be that Tv � ω log n. Thus at time Tv the radius of the sphere of influence of v

is O
(

(ω log n/Tv)
1/m
)

= o(1). The implication is that, in order for max{Tv, tv}
to be equal to tv, a node would have to be very close to the border, that is,
δ(v) = o(1). So for most nodes under consideration, max{Tv, tv} = Tv, and
they behave like in a uniform SPA model of density ρ(v) as soon as their degree
reaches ω log n. Further, of these nodes, those with deg(v, n) ≥ ω2 log n reach
degree ω log n at time o(n), and so have o(deg(v, n)) neighbours outside R(v).

We can use the results on the degree to show that each graph induced by
one of the regions R` has a power law degree distribution. Let Ni(j, n) denote
the number of nodes of degree j at time n in the region Ri and let jf = jf (n) =(
n/ log8 n

) pρmaxA1
4pρmaxA1+2 .

Theorem 4 A.a.s. the graph induced by the nodes in region R` has a power
law degree distribution with coefficient 1 + 1/pρiA1. Precisely, a.a.s. for any
1 ≤ i ≤ km there exists a constant ci such that for any 1� j ≤ jf ,

Ni(j, n) = (1 + o(1))cij
−(1+ 1

pρiA1
)
qin.

Moreover, a.a.s. the entire graph generated by the Asymmetric SPA model has a
degree distribution whose tail follows a power law with coefficient 1+1/pρmaxA1.
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The number of edges also validates our hypothesis that a region of a certain
density behaves almost as a uniform SPA model with adjusted parameters. In
the SPA model with parameters ρ`A1, ρ`A2 and p, the average out-degree is ap-
proximately pρ`A2

1−pρ`A1
, as per [1, Theorem 1.3]. The following theorem shows that

the subgraph induced by one of the regions has the equivalent expected number
of edges, and most edges have both endpoints in the same region. Moreover, this
result shows why we need the condition pρmaxA1 < 1. In fact, if pρmaxA1 ≥ 1,
then the number of edges will grow superlinearly.

Theorem 5 For a region R` of density ρ`, a.a.s. |V (Gn)∩R`| = (1 + o(1))q`n.
Moreover,

E({(u, v) ∈ E(Gn) |u, v ∈ R`}|) = (1 + o(1))
pρ`A2

1− pρ`A1
q`n.

Furthermore, a.a.s.

|{(u, v) ∈ E(Gn) : R(u) 6= R(v)}| = o(n),

i.e. the number of edges that cross the boundary of R` is of smaller order than
the number of edges completely contained in the region.

Our ultimate goal is to derive the pairwise distances between the nodes in the
metric space through an analysis of the graph. The following theorem, obtained
using the approach of [8], provides an important tool. Namely, it links the number
of common in-neighbours of a pair of nodes to their (metric) distance. Using
this theorem, we can then infer the distance from the number of common in-
neighbours. Let cn(u, v) denote the number of common in-neighbours of two
nodes u and v.

The theorem distinguishes three cases. If u and v are relatively far from
each other, then a.a.s. they will have no common neighbours. If the nodes are
very close, then the number of common neighbours is approximately equal to a
fraction p of the degree of the node of smallest degree. The third case provides
a ‘sweet spot’ where the number of common neighbours is a direct function of
the metric distance and the degrees of the nodes. For any two nodes u and v,
let cn(u, v, t) denote the number of common in-neighbours of u and v at time t.

Theorem 6 Let ω = ω(n) be any function tending to infinity together with n,
and let ε > 0. The following holds a.a.s. Let u and v be nodes of final degrees
deg(u, n) = k and deg(v, n) = j such that R(u) = R(v), and k ≥ j ≥ ω2 log n.

Let ρ = ρ(v) and let Tv = n (ω log n/j)
pρA1 , and assume that

δ(v)m ≥ cj and δ(u)m ≥ ck, where c = (1 + ε)

(
A1

cmnpρA1T 1−pρA1
v

)
.

Let d(u, v) be the distance between u and v in the metric space. Then, we have
the following result about the number of common in-neighbours of u and v:
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Case 1. If for some ε > 0

d(u, v) ≥ ε
(
ω log n(k/j)

Tv

)1/m

then cn(u, v, n) = O(ω log n).

Case 2. If k ≥ (1 + ε)j for some ε > 0 and

d(u, v) ≤
(
A1k +A2

cmn

)1/m

−
(
A1j +A2

cmn

)1/m

= O

((
k

n

)1/m
)
,

then cn(u, v, n) = (1 + o(1))pj. If k = (1 + o(1))j and d(u, v)m � (k/n) =
(1 + o(1))(j/n), then cn(u, v, n) = (1 + o(1))pj as well.

Case 3. If k ≥ (1 + ε)j for some ε > 0 and(
A1k +A2

cmn

)1/m

−
(
A1j +A2

cmn

)1/m

< d(u, v)�
(
ω log n(k/j)

Tv

)1/m

,

then

cn(u, v, n) = Ci
− (pρA1)2

1−pρA1

k i−pρA1

j d(u, v)−
mpρA1
1−pρA1

(
1 +O

((
ik
ij

)pρA1/m
))

,

(1)

where ik = n
(
A1

A2
k
)− 1

pρA1
and ij = n

(
A1

A2
j
)− 1

pρA1
, and C = pA−1

1 A
1

1−pρA1
2 c

− pρA1
1−pρA1

m .

If k = (1+o(1))j and ε(k/n)1/m < d(u, v)� (ω log n/Tv)
1/m for some ε > 0,

then

cn(u, v, n) = Θ

(
i
− (pρA1)2

1−pρA1

k i−pρA1

j d(u, v)−
mpρA1
1−pρA1

)
.

3 Reconstruction of Geometry

We set out to discover the character of nodes in a network purely through link
structure, and to quantify the similarities. Spatial models allow us a convenient
definition of similarity: distances between nodes. In examining the SPA model,
the number of common neighbours allows us to uncover pairwise distances, a
first step in the reconstruction of the geometry.

Description of Model Used For simulations, we use an Asymmetric SPA model
we call the diagonal layout, which has 4 ‘clusters’ of identical high density, with
m = 2. In the diagonal layout, k = 4 and the 4 regions (x, x), 1 ≤ x ≤ 4, are
dense, with the others sparse. We will use ‘dense region’ and ‘sparse region’ to
denote the union of all regions with densities ρd and ρs, respectively. For ease
of notation, we note that ρs = 4/3 − ρd/3 so it is enough to provide the value
of ρd only. In Figure 1 we see an example of the diagonal layout with nodes and
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Fig. 1. Left: diagonal layout, n = 1, 000, p = 0.6, ρd = 1.6, A1 = 0.7, A2 = 2.0; Right:
degree distribution n = 1, 000, 000, p = 0.7, ρd = 1.2, A1 = 0.7, A2 = 1.0

edges, and we also see evidence that the densest region does dominate the power
law degree distribution.

First we assume uniform density and apply the original estimator (Equation 7
from [8]) to our diagonal layout; the results are shown in the left in Figure 2. We
eliminate those pairs we assume are in Case 1 (too close) and those in Case 2
(too far), by limiting our pairs to those with more than 10 common neighbours
and fewer than p/2 deg(v, n). This leaves 2270 pairs. The figure shows that the
approach fails, and that it leads to a consistent overestimate of the distance
for the nodes. This is somewhat counterintuitive, but the trouble lies with the
estimator for a node’s age based on in-degree: a node in Rd is thought to be
much older than it actually is and confounds the distance estimator.
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Fig. 2. SPA model, n = 100, 000, diagonal layout, p = 0.7, ρd = 1.6, A1 = 0.7, A2 =
2.0, actual vs. estimated distances for pairs of nodes; Left: using original estimator;
Right: using new estimator, density known

More precision is needed to take into account the varying densities. Exam-
ining Theorem 6, we note that for Case 3, equation (1) can be used to obtain

an estimate d̂ of the distance between a pair of nodes. For a pair of nodes u, v
which are both in a region of density ρ, and their distance is such that Case 3
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applies, this estimate is given by:

d̂(u, v) = C1(cn(u, v))−
(1−pρA1)
mpρA1 k1/mj

(1−pρA1)
pρA1m (2)

where C1 = (ncm)−1/mp
−

(1−pρ(v(j))A1)

mpρ(v(j))A1 A
1/m
1 A

2
mpρ(v(j))A1

2 and k = deg(u, n) and
j = deg(v, n), with k ≥ j.

Using the same simulation results, we compare the estimated distance using
Equation 2 vs. actual node distance. Note we use our calculated density for each
node to determine their estimated ages, but use the calculated density of the
node of higher degree in the distance formula. The results seen on the right in
Figure 2 indicate that our new estimator is quite accurate in predicting distances
for some pairs of nodes, given all the parameters of the model, except for the
cross-border pairs.

3.1 Estimating the density

In real-world situations, we cannot assume to know the density of the region
containing a given node. In fact, the density of the region containing a node is
an important part of the ‘second layer of meaning’ which we aim to extract from
the graph. Therefore, in order to use our estimator for the distances between the
nodes, we need to be able to use the graph structure to estimate the densities.

Using the theoretical results obtained from the previous section, we see that
we can use the out-degrees of the in-neighbours of v to estimate the density of
R(v). As per Theorem 5, the average out-degree in R` is approximately pρ`A2

1−pρ`A1
.

Simulations confirm this expected value. Running sets of parameters 10 times
each, we observe that if pρmaxA1 ≤ 0.75, the number of edges per region are
within 90% of the expected value, on average. For 0.75 < pρmaxA1 ≤ 0.8, the
number of edges is within 75% of expected. For pρmaxA1 > 0.8 we start to
see deviation, as our expression for the expected number of edge in the densest
region becomes ‘unbounded’, i.e. the denominator starts to approach 0. The
number of edges that cross the border from sparse to dense, or between clusters,
is consistently seen to be much smaller in order than the edges within each
region.

Thus, if we have a large enough set of nodes from the same region, then
we can use the formula above to estimate the density of the region. Consider a
node v, and make two assumptions: (i) almost all neighbours of v are contained
in R(v), and (ii) the neighbours of v form a representative sample of all nodes
of R(v). Simulations show that these assumptions are justified and allow us to
make an estimate for ρ(v).

Set deg
+

(N−(v)) to be the average out-degree of the in-neighbours of v.
Assuming the in-neighbours of v are also in R(v) (a fair assumption, given our
earlier theorems), an estimator for the density can be derived from the average
out-degree:

ˆρ(v) =
deg

+
(N−(v))

pA2 + pA1deg
+

(N−(v))
.
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We see in the histograms in Figure 3 (Left and Center) that the average
out-degree of a node’s in-neighbours in the dense region of the diagonal layout
is quite accurate, but for the sparse region, the average out-degree is higher
than expected. Displayed are the results for nodes with deg−(v) ≥ 10. The
calculated theoretical value for the average out-degree of in-neighbours for a
node in the dense region is 5.85, and in the sparse, 1.45. This translates in
ρd = 1.6 and ρs = 0.8. We see peaks that are quite accurate for the dense
region, but translated to the right for the sparse region. Likely, those are sparse
region nodes located close to the border; our condition on the minimum degree
favours the ‘rich’ sparse region nodes.
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Fig. 3. Diagonal layout, n = 100, 000, ρd = 1.6, A1 = 0.7, A2 = 2.0; Left: p =
0.6, average out-degree of the in-neighbours; Center: p = 0.6, calculated density from
average out-degree; Right: p = 0.7, using estimated density from the node of greater
final degree, all other parameters known

Finally, we use ρ̂, and knowing all other parameters, to calculate the distance
between the nodes based on number of common neighbours, Equation 2, using
the same simulation results as earlier. Again note we use our calculated density
for each node to determine their estimated ages, but use the calculated density
of the node of higher degree in the distance formula. Using the lower degree node
gives similar results. The results are seen in Figure 3 (Right). We obtain very
good agreement between calculated and estimated densities.

4 Conclusion

Our analysis of a SPA model with non-uniform random distribution of nodes
reveals almost independent clusters of nodes. Expected degree, degree distribu-
tion and number of edges behave as they would in localized SPA models with
‘adjusted’ parameters. It is not examined here, but it is suspected that these
adjusted parameters extend to other existing results on the SPA Model such as
the small world property and spectral properties: this is a goal of future work.
The main result of the paper is that, by using the average out-degree of the in-
neighbours of a node, an estimate of its region’s density can be obtained. With
this density in hand, the examination of common neighbours for pairs of nodes
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allows us to find their distances in the metric space. Currently, the number of
pairs of nodes for which we have distances is quite limited due to the nature
of the spheres of influence: that they either start small or shrink rapidly results
in only those pairs that are very close having a significant number of common
neighbours. Attempts to increase our information could include the use of path
lengths, second neighbourhoods, etc.

Although the theoretical results are interesting in and of themselves, further
work can be done in examining their validity in the context of real networks, i.e.
recovering meaningful distances for pairs of nodes. Early results using machine
learning and graphlets show that the SPA Model can be an accurate represen-
tation of social networks [9]; it would be ideal to extend our knowledge of the
accuracy of the SPA Model, in particular the Asymmetric SPA Model, to other
complex networks. In the context of real networks we may be able to further
examine potentially ’anomalous nodes, such as those with shifting positions, or
those with dual identities.

Our ultimate goal is reverse engineering: given the link structure of a graph,
and assuming it could be modelled by the SPA model, we would be able to
completely reconstruct the underlying spatial reality, a method of profound ap-
plication. For example, knowing the hyperlink structure of a part of the Web,
and assuming that it is well represented by the SPA model, we will be able to
use this information to create a topic map of the pages. We will have developed a
very powerful tool for prediction in the Web, with both economic and sociological
benefits, such as improved web search and the discovery of cyber-communities.
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