A NOTE ON OFF-DIAGONAL SMALL ON-LINE RAMSEY NUMBERS FOR PATHS

PAWEŁ PRAŁAT

ABSTRACT. In this note we consider the on-line Ramsey numbers $\overline{\mathcal{R}}(P_n, P_m)$ for paths. Using a high performance computing clusters, we calculated the values for off-diagonal numbers for paths of lengths at most 8. Also, we were able to check that $\overline{\mathcal{R}}(P_9, P_9) = 17$, thus solving the problem raised in [5].

1. INTRODUCTION, DEFINITIONS, AND MAIN RESULTS

In this paper, we consider the following variant of the on-line Ramsey game introduced independently by Beck [1] and Friedgut et al. [2]. Let G, H be a fixed graphs. The game between two players, called the Builder and the Painter, is played on an unbounded set of vertices. In each of her moves the Builder draws a new edge which is immediately coloured red or blue by the Painter. The goal of the Builder is to force the Painter to create a red copy of G or a blue copy of H; the goal of the Painter is the opposite, he is trying to avoid it for as long as possible. The payoff to the Painter is the number of moves until this happens. The Painter seeks the highest possible payoff. Since this is a two-person, full information game with no ties, one of the players must have a winning strategy. The on-line Ramsey number $\overline{\mathcal{R}}(G, H)$ is the smallest payoff over all possible strategies of the Builder, assuming the Painter uses an optimal strategy.

Similar to the classical Ramsey numbers (see a dynamic survey of Radziszowski [8] which includes all known nontrivial values and bounds for Ramsey numbers), it is hard to compute the exact value of $\overline{\mathcal{R}}(G, H)$ unless G, H are trivial. In this relatively new area of small on-line Ramsey numbers, very little is known.

Kurek and Ruciński considered in [4] the most interesting case where G and H are cliques, but besides the trivial $\overline{\mathcal{R}}(K_2, K_k) = \binom{k}{2}$, they were able to determine only one more value, namely $\overline{\mathcal{R}}(K_3, K_3) = 8$, by

Key words and phrases. size Ramsey number, online Ramsey games.

Research partially supported by grants from NSERC, MITACS, Sharcnet, ACEnet, and CFI.

mimicking the proof of the upper bound for classical Ramsey number $R(K_3, K_3)$. The author of this note, with computer support, showed that $\overline{\mathcal{R}}(K_3, K_4) = 17$, provided a general upper bound for $\overline{\mathcal{R}}(K_k, K_l)$, and studied its asymptotic behaviour (see [6] for more details).

Grytczuk et al. [3], dealing with many labourious subcases, determined the on-line Ramsey numbers for a few symmetric short paths $(\overline{\mathcal{R}}(P_2, P_2) = 1, \overline{\mathcal{R}}(P_3, P_3) = 3, \overline{\mathcal{R}}(P_4, P_4) = 5, \overline{\mathcal{R}}(P_5, P_5) = 7, \overline{\mathcal{R}}(P_6, P_6) =$ 10). It is clear that $\overline{\mathcal{R}}(P_n, P_m) \ge n + m - 3$ for $n, m \ge 2$ since the Painter may color safely the first n - 2 edges red, and the next m - 2edges blue. Also it is not hard to prove that $\overline{\mathcal{R}}(P_n, P_m) \le 2(n+m) - 7$ for $n, m \ge 2$ (see [3] for more details) but it seems that determining the exact values for longer paths requires computer support. The author of this paper was able to determine some new values, namely $\overline{\mathcal{R}}(P_7, P_7) = 12, \overline{\mathcal{R}}(P_8, P_8) = 15, \text{ and } \overline{\mathcal{R}}(P_9, P_9) \le 17$ (see [5] for more details).

In this note, we determine missing values for off-diagonal on-line Ramsey numbers for paths of lengths at most 8 and we show that $\overline{\mathcal{R}}(P_9, P_9) = 17$, confirming the Conjecture 4.2 [5]. The results are presented in Table 1.

	2	3	4	5	6	7	8	9
2	1 [3]							
3	2	3 [3]						
4	3	4	5[3]					
5	4	5	6	7[3]				
6	5	7	8	9	10[3]			
7	6	8	9	10	11	12~[5]		
8	7	9	11	12	13	14	15[5]	
9	8	10	12	13	14	15	16	17

TABLE 1. Values of $\overline{\mathcal{R}}(P_n, P_m)$

For a few small numbers, we provide proofs in Section 2, but for larger values we have to be content with computer computations described in Section 3.

2. Theoretical results

As we already mentioned in the Introduction, $\overline{\mathcal{R}}(P_n, P_m) \ge n+m-3$, for $n, m \ge 2$. This lower bound is clearly attained for $\overline{\mathcal{R}}(P_2, P_m)$ $(m \ge 2)$, but also for $\overline{\mathcal{R}}(P_3, P_4)$, $\overline{\mathcal{R}}(P_3, P_5)$, and $\overline{\mathcal{R}}(P_4, P_5)$. **Proposition 2.1.** $\overline{\mathcal{R}}(P_3, P_4) = 4$, $\overline{\mathcal{R}}(P_3, P_5) = 5$, and $\overline{\mathcal{R}}(P_4, P_5) = 6$.

Proof. Let us start with a proof that $\overline{\mathcal{R}}(P_3, P_4) = 4$. After presenting two edges of a path P_3 , there are only two possible patterns (up to symmetry): rb and bb. Then the Builder creates a red path P_3 or a blue path P_4 in the next two moves, as depicted in Figure 1. (The final edge is drawn in two colours.)

FIGURE 1. Forcing red P_3 or blue P_4

In order to show that $\mathcal{R}(P_3, P_5) = 5$ we consider the following strategy of the Builder: present two edges of P_3 and then extend the path by adding an edge to vertex of degree 1. If a red colour has been used in the first two moves, then next edge is incident to the red one (that is, the Painter is forced to use blue to colour this edge). Thus, there are only three possible patterns that can appear after first three rounds: *bbb*, *bbr*, and *brb*. The Builder now is able to finish the game in the next two moves, as shown in Figure 2.

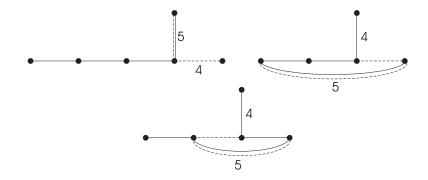


FIGURE 2. Forcing red P_3 or blue P_5

To prove that $\overline{\mathcal{R}}(P_4, P_5) = 6$ one have to analyze more subcases. Similarly as before, the Builder shows a path P_4 in the first three steps but she has to avoid the pattern rbr (otherwise, the Painter has a strategy to 'survive' to the end of sixth round). In order to do that, the Builder can use the same strategy as for the $\overline{\mathcal{R}}(P_3, P_5)$ case. Therefore,

essentially one of the four possible color patterns appears: bbb, bbr, brb, and rrb. Then she obtains a red P_4 or a blue P_5 in the next three moves, as shown in Figure 3. (A circled number means that the Painter had a choice in that move, which led to a branching into subcases.)

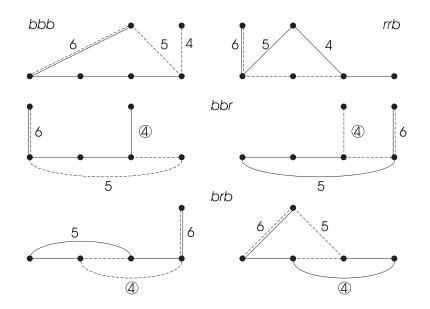


FIGURE 3. Forcing red P_4 or blue P_5

Our next on-line Ramsey number that we are going to establish is larger than the trivial lower bound we used so far.

Proposition 2.2. $\overline{\mathcal{R}}(P_3, P_6) = 7$.

Proof. For the lower bound, consider a natural strategy for the Painter: colour an edge red if it does not create a red copy of P_3 , otherwise use blue. The game is finished when a blue copy of P_6 is created. The first edge is coloured red and if the Painter is able to use the color red in one of the next moves, we are done. Thus, the only way for the Builder to finish the game in the total of six rounds is to create in the next five rounds a blue P_6 . This is possible only by using both ends of the red edge, making the last winning move impossible.

For the upper bound, suppose that the first edge is coloured red. Then the Builder can force the Painter to create a blue P_5 in the next four moves, as shown in Figure 4. Next edge extending the blue path must be coloured red but the Builder can finish a game in the very next move.

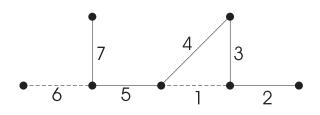


FIGURE 4. Forcing red P_3 or blue P_6

If the first edge is coloured blue, the Builder can continue extending a path until red is used and similar winning strategy can be applied. (It is even possible to prove that the Builder can win in the next five moves, that is, the Painter must use red in the first round, assuming he uses an optimal strategy.) \Box

3. Computer computations

We implemented and ran programs written in C/C++ using backtracking algorithms. (The programs can be downloaded from [7].) Backtracking is a refinement of the brute force approach, which systematically searches for a solution to a problem among all available options. Since it is not possible to examine all possibilities, we used many advanced validity criteria to determine which portion of the solution space needed to be searched. For example, one can look at the coloured graph in every round and try to estimate the number of red (and blue) edges needed to create desired structure. This knowledge can be used to avoid considering the whole branch in the searching tree. If the Painter can use red colour and 'survive' additional k rounds, then there is no point to check whether using blue colour forces him to finish the game earlier.

Using a set of clusters (see Section 4 for more details), we were able to run (independently) the program from different initial graphs with given colouring of edges. In the table below we present the numbers of nonisomorphic coloured graphs with k edges that have been found by computer. Since the game we play is nonsymmetric we have to consider more initial graphs than in the symmetric version (see [5] where the symmetric game for paths was considered). If the number of edges is odd, we have exactly two times more graphs to consider. For the even case, this number is a little bit smaller than double.

Having results from computer computations starting from different initial graphs (even partial ones!) we are able to determine the exact

k	# of symmetric graphs	# of nonsymmetric graphs
1	1	2
2	4	6
3	12	24
4	51	93
5	203	406
6	1,004	1,959
7	5,117	10,234
8	29,153	58,013
9	176,778	353, 556
10	1, 150, 164	2,298,303

TABLE 2. Number of nonisomorphic coloured graphs with k edges

value of the on-line Ramsey numbers. The relations between the partial results in different levels are complicated but can be found using a computer. The relations between levels 1 - 2, and 2 - 3 are described below. For simplicity, we present the symmetric case; the nonsymmetric one is studied in the same way.

FIGURE 5. Coloured graphs with two edges

There is only one possible coloured graph G_1^1 with one edge (up to isomorphism). Graphs with two and three edges are presented in Figure 5 and Figure 6, respectively. Let $x_i^m = x_i^m(G_i^m, k, l)$ denote the number of moves in a winning strategy of the Builder in the online Ramsey game, provided that after m moves a coloured graph is isomorphic to G_i^m . Using the notation

$$x_1 \lor x_2 = \max\{x_1, x_2\}$$
$$x_1 \land x_2 \land \dots \land x_k = \min\{x_1, x_2, \dots, x_k\},$$

it is not hard to see that

$$x_1^1 = (x_1^2 \lor x_2^2) \land (x_3^2 \lor x_4^2),$$

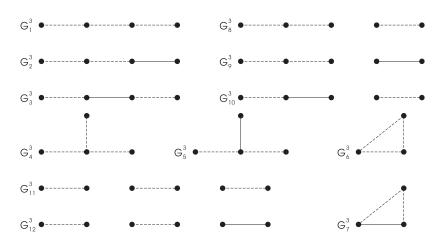


FIGURE 6. Coloured graphs with three edges

and

$$\begin{array}{rcl} x_1^2 &=& (x_1^3 \lor x_2^3) \land (x_8^3 \lor x_9^3) \land (x_4^3 \lor x_5^3) \land (x_6^3 \lor x_7^3) \\ x_2^2 &=& (x_3^3 \lor x_2^3) \land x_{10}^3 \land x_5^3 \land x_7^3 \\ x_3^2 &=& (x_1^3 \lor x_3^3) \land (x_8^3 \lor x_{10}^3) \land (x_{11}^3 \lor x_{12}^3) \\ x_4^2 &=& x_2^3 \land (x_9^3 \lor x_{10}^3) \land x_{12}^3 \,. \end{array}$$

Each " \lor " sign corresponds to the Painter's move, " \land " corresponds to the Builder's one. He tries to play as long as possible, choosing the maximum value, but she would like to win as soon as possible.

We describe the approach to determine the value of $\overline{\mathcal{R}}(P_9, P_9)$ with a little bit more details below. The values for other cases are 'calculated' the same way and thus we present the results of computer computations in Tables 4 - 8 only.

Proposition 3.1. $\overline{\mathcal{R}}(P_9, P_9) = 17$

Proof. It follows from Theorem 2.3 [5] that $\overline{\mathcal{R}}(P_9, P_9) \leq 17$. In order to show that $\overline{\mathcal{R}}(P_9, P_9) > 16$ we examined 1, 150, 164 initial configurations with 10 edges. Exactly 1,352 graphs contain a monochromatic P_9 so we put $x_i^{10} \leq 10$ for these graphs. For the rest, we run the program to check whether $x_i^{10} \leq 16$. The results are presented below.

Next we verified that the Painter has a strategy to reach one of the 'good' configurations that allow him to survive the next six moves. \Box

PAWEŁ PRAŁAT

	# of initial configurations
$x_i^{10} \le 10$	1,352
$11 \leq x_i^{\overline{10}} \leq 16$	47,011
$\begin{array}{c c} 11 \leq x_i \leq 10\\ 17 \leq x_i^{10} < \infty \end{array}$	1,101,801
total	1,150,164

TABLE 3. Results for a game for symmetric paths of length 8

$\overline{\mathcal{R}}(P_4, P_6) = 8$		$\overline{\mathcal{R}}(P_5, P_6) = 9$		$\overline{\mathcal{R}}(P_3, P_7) = 8$		$\overline{\mathcal{R}}(P_4, P_7) = 9$	
$x_i^1 = 8$	2	$x_i^1 = 9$	2	$x_i^1 = 8$	2	$x_i^1 = 9$	2
total	2	total	2	total	2	total	2
			C C			т	

TABLE 4. Results of computer computations I

$\overline{\mathcal{R}}(P_5, P_7) = 10$	$\overline{\mathcal{R}}(P_6, P_7) = 11$	
$\begin{array}{c c c} x_i^5 \le 5 & 16 \\ x_i^5 = 9 & 36 \end{array}$	$\begin{array}{c c} x_i^6 \le 6 & 21 \\ x_i^6 = 10 & 82 \end{array}$	$\overline{\mathcal{R}}(P_3, P_8) = 9$
$x_i^5 = 10$ 255	$x_i^6 = 11 1, 107 $	$\begin{array}{c c} x_i^1 = 9 & 2 \\ \hline \text{total} & 2 \end{array}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$x_i^6 \ge 12 \qquad 749$	
total 406	total 1,959	

TABLE 5. Results of computer computations II

$\overline{\mathcal{R}}(P_4, P_8)$) = 11	$\overline{\mathcal{R}}(P_6, P$	$\overline{\mathcal{R}}(P_6, P_8) = 13$		
$x_i^5 < 5$	76	$\mathcal{R}(P_5, P_8) = 12$ $x_i^7 \le 7 1385$		$x_i^7 \le 7$	283
$\begin{array}{c} x_i \geq 0\\ x_i^5 = 9 \end{array}$	23	$\begin{array}{c} x_i \leq r \\ x_i^7 = 10 \end{array}$		$x_i^7 = 11$	162
$\begin{bmatrix} x_i - 9 \\ x_i^5 = 10 \end{bmatrix}$	140	$x_i = 10$ $x_i^7 = 11$	209 2,737	$x_i^7 = 12$	3,358
$x_i = 10$ $x_i^5 = 11$	140	$x_i = 11$ $x_i^7 = 12$	4,272	$x_i^7 = 13$	4,823
$\begin{array}{c} x_i = 11 \\ x_i^5 \ge 12 \end{array}$	26	$\begin{array}{c} x_i = 12\\ x_i^7 \ge 13 \end{array}$	1,571	$x_i^7 \ge 13$	156
<i>u</i> —		<i>u</i> —	,	$x_i^7 \ge 14$	1,452
total	406	total	10,234	total	10,234

TABLE 6. Results of computer computations III

4. Acknowledgment

This work was made possible by the facilities of

• the Shared Hierarchical Academic Research Computing Network SHARCNET (www.sharcnet.ca): 8,082 CPUs,

$\overline{\mathcal{R}}(P_7, P_8) =$			$\overline{\mathcal{R}}(P_4, P_4)$	(9) = 12
$\begin{array}{c} x_i^8 = 12 \\ x_i^8 = 13 \\ x_i^8 = 13 \\ x_i^8 = 14 \\ x_i^8 \ge 14 \\ x_i^8 \ge 14 \\ x_i^8 \ge 15 \\ y \end{array}$,002 ,581	$ \overline{\mathcal{R}}(P_3, P_9) = 10 $ $ \overline{x_i^1 = 10} 2 $ $ \hline \text{total} 2 $	$\begin{array}{c} x_{i}^{8} \leq 8 \\ x_{i}^{8} = 10 \\ x_{i}^{8} = 11 \\ x_{i}^{8} = 12 \end{array}$	$\begin{array}{r} 26,048\\ 260\\ 3,596\\ 13,347 \end{array}$

TABLE 7. Results of computer computations IV

$\overline{\mathcal{R}}(P_5, P_9) = 13$	$\overline{\mathcal{R}}(P_6, P_6)$	(9) = 14	$\overline{\mathcal{R}}(P_7, P_9) = 15$		
$\frac{x_i^8 \le 8}{x_i^8 \le 8} 11,450$	$x_i^8 \le 8$	3,213	$x_i^9 \le 9$	7,465	
$\begin{vmatrix} x_i \leq 6 \\ x_i^8 = 11 \end{vmatrix}$ 459	$x_i^8 = 12$	309	$x_i^9 = 13$	935	
$\begin{vmatrix} x_i &= 11 \\ x_i^8 &= 12 \end{vmatrix} = 6,868$	$x_i^8 = 13$	· · ·	$x_i^9 = 14$	· · · · · ·	
$\begin{vmatrix} x_i &= 12 \\ x_i^8 &= 13 \\ x_i^8 &= 13 \end{vmatrix} = 21,234$	$x_{i}^{8} = 14$		$x_{i}^{9} = 15$		
$\begin{vmatrix} x_i &= 10 \\ x_i^8 \geq 14 \end{vmatrix} = 18,002$	$x_{i}^{8} \ge 14$	· · ·	$x_{i}^{9} \ge 15$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$x_i^8 \ge 15$	13,970	$x_i^9 \ge 16$	99,659	
10tai 38,013	total	58,013	total	353, 556	

TABLE 8. Results of computer computations V

- the Atlantic Computational Excellence Network ACEnet (www.acenet.ca): 480 CPUs,
- the Department of Combinatorics and Optimization, University of Waterloo (www.math.uwaterloo.ca/CandO_Dept): 80 CPUs.

In order to find new on-line Ramsey numbers we checked (independently) millions initial configurations. A running time of one serial program varied between a few seconds and 10 hour. We can estimate the total computational requirements to be around 250,000 CPU hours (28.5 years).

References

- J. Beck, Achievement games and the probabilistic method, Combinatorics, Paul Erdős is Eighty, Bolyai Soc. Math. Stud., vol. 1, (1993), 51–78.
- [2] E. Friedgut, Y. Kohayakawa, V. Rödl, A. Ruciński, and P. Tetali, Ramsey games against one-armed bandit, Combin. Probab. Comput., 12 (2003), 515– 545.
- [3] J. Grytczuk, H. Kierstead, and P. Prałat, On-line Ramsey Numbers for Paths and Stars, Discrete Mathematics and Theoretical Computer Science, submitted.

- [4] A. Kurek and A. Ruciński, Two variants of the size Ramsey number, Discuss. Math. Graph Theory 25 (2005), no. 1-2, 141–149.
- [5] P. Prałat, A note on small on-line Ramsey numbers for paths and their generalization, Australasian Journal of Combinatorics, accepted.
- [6] P. Prałat, R(3,4) = 17, Electronic Journal of Combinatorics, 13pp, submitted.
 [7] P. Prałat, programs written in C/C++,
- http://www.mathstat.dal.ca/~pralat/index.php?page=publications.
- [8] S. Radziszowski, Small Ramsey Numbers, Electron. J. Combin. Dynamic Survey DS1, revision #11 (2006), 60pp.

Department of Mathematics and Statistics, Dalhousie University, Halifax, NS, Canada B3H 3J5

E-mail address: pralat@mathstat.dal.ca