
The CopsRobber Matlab Package: Documentation

Ath. Kehagias and P. Pralat

9/6/2011

Abstract

The package CopsRobber is a small collection of Matlab functions which perform various calculations
related to the CR game. In this game one or more cops move along the edges of a graph G with the goal of
capturing a robber. The robber may be adversarial (he moves so as to avoid capture) or drunk (he performs
a random walk on G). CopsRobber performs computations such as: find an optimal strategy for cops facing
an adversarial or drunk robber, simulate a CR game, estimate the cost of drunkenness etc.

1 Introduction

The CopsRobber package can be downloaded from http://users.auth.gr/~kehagiat/GraphSearch/). It
comes in a single zipped file, which contains the Matlab functions, the documentation (i.e., the document you
are currently reading) and a technical report which describes in more detail the algorithms and the theory
behind them. Installation is quite simple: unpack the contents of the zip file into a directory and add it to the
Matlab path.

CopsRobber contains functions to perform various computation related to the Cops and Robber (CR) game
[7, 9]. This game can be described as follows. On an undirected graph G, k cops and a robber move in turns;
the cops’ goal is to capture the robber, i.e., to reach a position where at least one cop occupies the same node
as the robber. It is assumed that the robber is visible to the cops, i.e., they always know his position; similarly,
the robber always knows the cops’ positions. The game consists of rounds and each round has two turns.

1. In the initial or placement round the cops choose their initial positions (more than one cop can be in the
same node) and then the robber chooses his position.

2. In each of the following rounds, first the cops and then the robber move to nodes neighboring their
current positions. Staying in place is also allowed.

It is assumed that the cops will always play optimally. In the “classical” version of the CR game, the
robber is adversarial, i.e., his goal is to avoid capture and he plays optimally with respect to this end. Given
a large enough k the cops can win on any graph (for example, if one cop occupies each node). The minimum
k required to guarantee that the cops win on G is called the cop number of G. We are also interested in the
version with the drunk robber, who performs a random walk on G and does not attempt to avoid capture.

2 Contents of the Package

The main CopsRobber functions are the following.

CRstrat.m Compute expected capture time for a fixed strategy and drunk robber
CRcaar.m Compute optimal capture times and optimal moves for cops and adv. robber
CRcadr.m Compute expected capture times and optimal moves for cops and drunk robber
CRsim.m Simulate cops and (adv. or drunk) robber playing feedback strategies
CRcod.m Compute the cost of drunkenness
CRcheq.m Checks that C (and R) satisfies the optimality equations

Table 1

1



Several auxiliary functions, not listed here, are also used. Let us note that we use the function FloydSPR,
an implementation of the Floyd shortest paths algorithm, written by Weihuang Fu and available through the
Matlab Central file exchange.

We give a detailed description of the usage of the above function in Section 4. However we first give, in
Section 3, a short summary of the theory behind the functions. This section can be skipped at first reading
but the user will probably need to read it at some point in order to understand what the CopsRobber functions
actually compute.

3 Theory

The cops and adversarial robber game has been introduced independently by Nowakowski [7] and Quilliot [9].
Various versions of the problem have been studied and many papers published. For some pointers to the litera-
ture, see our technical report [4] (you can download it from http://users.auth.gr/~kehagiat/GraphSearch/)
and our paper [5]. The algorithm we call CAAR has been introduced in [3].

The cops and drunk robber game has also been studied as a special case of Markov Decision Processes
(MDP), which has been studied extensively. Good book length treatments of MDP include [1, 8, 10]. Especially
for the cops and drunk robber problem see [2], where the algorithm we call CADR has been introduced.

We will only give here a very short summary of the mathematical concepts involved in the problem; for a
more detailed treatment see the attached technical report.

3.1 Notation and Definitions

We start with some notation. The game is played on G = (V,E), an undirected, connected graph without
loops.

1. N (v) denotes the neighborhood of node v ∈ V and N+ (v) = N (v) ∪ {v} (the closed neighborhood of
v).

2. The minimum number of cops required to capture the adversarial robber is called the cop number of G
and is denoted by c(G).

3. Given k cops, Xi
t denotes the position of the i-th cop at time t (i ∈ {1, 2, . . . , k}, t ∈ {0, 1, 2, . . .});

Xt = (X1
t , . . . , X

k
t ) denotes the vector of all cop positions at time t; X = (X0, X1, X2, . . .) denotes the

positions of all cops during the game (X may have finite or infinite length).

4. Yt denotes the position of the robber at time t and Y = (Y0, Y1, Y2, . . .) the positions of the robber during
the game.

5. The moving sequence is as follows: first the cops choose initial positions X0, then the robber chooses Y0.
For the following rounds ( t ∈ {1, 2, . . .}) first the cops choose Xt and then the robber chooses Yt.

6. The capture time is denoted by T and defined as follows

T = min{t : ∃i such that Xi
t = Yt},

i.e., it is the first time a cop is located at the same vertex as the robber (note that this can happen either
after the cops move or after the evader moves). When k ≥ c(G) we will have T < ∞ (since c(G) cops
can capture the adversarial robber they can also capture the drunk one).

We start with the adversarial robber. Given initial cop positions x ∈ V k and robber position y ∈ V , we let
ctx,y(G, k) = T . The k-capture time is defined as follows:

ct(G, k) = min
x∈V k

max
y∈V

ctx,y(G, k).

2



When k = c(G) we simply write ct(G) instead of ct(G, c(G)), and call it the capture time instead of c(G)-
capture time. Let us stress that the above quantities are defined under the assumption of optimal play by both
players.

By “drunk robber” we mean one who performs a random walk on G; more specifically, when he is at vertex
v ∈ V , he moves to u ∈ N(v) with probability equal to 1/|N(v)|. We do not include v in N(v). For a given
initial configuration and for a given strategy of cops, the capture time T is a random variable. Given initial
positions x, y for cops and robber, let

dctx,y (G, k) = E (T | X0 = x, Y0 = y, k cops are used optimally)

and let the expected k-capture be

dct (G, k) = min
x∈V k

∑
y∈V

dctx,y (G, k)
|V |

.

As before, dct(G) = dct(G, c(G)).
Finally, the cost of drunkenness is

F (G) =
ct(G)
dct(G)

; (1)

we obviously have F (G) ≥ 1.

3.2 Computing the expected capture time for a fixed cop strategy

Letting Pi,j = Pr (Yt = j|Yt−1 = i) we have

Pi,j =
{ 1
|N(i)| for j ∈ N(i)

0 otherwise.

and P is the n×n transition probability matrix governing the robber’s random walk in G in the absence of cops.
To account for capture by the cops, we define V = V ∪ {n}, where n is the capture state: the corresponding
(n+ 1)× (n+ 1) transition matrix is

P =
(
P 0
0 1

)
.

Suppose now that a single cop is located in vertex x. The transition probability matrix now becomes P (x).
This must describe the probability of capture, which can happen in two ways:

1. the robber is located at y and, in the first phase of the t-th round, the cop moves into x = y; hence the
robber is captured w.p.1 and P x,n (x) = 1, P x,y′ (x) = 0 for y′ < n;

2. the robber is located at y 6= x and, in the second phase of the t-th round, he moves from y to y′ = x;
hence he is captured w.p. Py,y′ and, for all y ∈ V − {x}, P y,n (x) = Py,x, P y,x′ (x) = 0.

We can summarize the above by writing

P (x) =
(
P (x) p (x)

0 1

)
.

Especially for the placement round of the game (t = 0) we need a different matrix, P̂ (x), which is the unit
matrix with the one of the x-th row moved to the (n+ 1)-th column. Letting π(t) = [π0(t), ..., πn(t)] (where
πi(t) = P(Yt = i) for i ∈ V and t ∈ {0, 1, ..., s}) and given a strategy X = (x0, x1, ..., xs) and π̂ (0) =

[
1
n , ...,

1
n , 0
]
,

we have
π (0) = π̂ (0) P̂ (x0) and, for t ∈ {1, 2, ...} , π (t) = π (t− 1)P (xt) . (2)

The approach can be generalized to more than one cops, by letting x = (x1, x2, . . . , xk) be a configuration of
cops and defining P (x), P (x) analogously to the one cop case.

3



Given that the cops follow the strategy X = (X1, X2, . . . , Xs), the transition probabilities of Y satisfy

Pr(Yt = j | Yt−1 = i) = Pi,j(Xt)

for t ≤ s, so the robber process is a Markov Decision Processes (MDP) or Controlled Markov Processes, where
the control function is Xt; it is a (stochastic) control in the sense that it allows us to change the transition
probabilities of Yt. We can use the MDP formulation to compute ET for any given strategy X in reasonable
time.

3.3 Computing the expected capture time for the optimal cop strategy

The cop will do better (in fact optimally) if he uses a feedback strategy, i.e., if he adjusts his next move
depending on the current position of both himself and the robber. In this seciton we give the algorithms by
which such a strategy can be computed.

The CAAR (C op Against Adversarial Robber) algorithm computes ctx,y (G) for every initial cop/robber
configuration (x, y). In addition, CAAR computes the optimal cop and robber play for every (x, y). Capture
time ct (G) is easily computed from ct (G) = minx maxy ctx,y (G). CAAR was introduced in [3]. Changing
notation, we now use Cx,y to denote the game duration when the cop is located at x, the robber at y and it’s
the cop’s turn to move (in other words Cx,y equals ctx,y (G)). Similarly Rx,y denotes game duration when it’s
the robber’s turn to move. For both Cx,y and Rx,y we asssume optimal play by both cop and robber. Let us
also define

V̂ 2 = V × V − {(x, x) : x ∈ V } ,
(i.e., V 2 excluding the diagonal) and N+ (x) = N (x) ∪ {x} (for all x ∈ V ). CAAR consists of the following
recursion (for i = 1, 2, ...):

∀ (x, y) ∈ V̂ 2 : R(i)
x,y = max

y′∈N+(y)
C

(i−1)
x,y′ , (3)

∀ (x, y) ∈ V̂ 2 : C(i)
x,y = 1 + min

x′∈N+(x)
R

(i)
x′,y. (4)

C and R are initialized with C
(0)
x,y = R

(0)
x,y = ∞ for all x 6= y. We set C(i)

x,x = R
(i)
x,x = 0 for i = 0, 1, 2, ... . Then

CAAR computes the solution of the equations

∀ (x, y) ∈ V̂ 2 : Rx,y = max
y′∈N+(y)

Cx,y′ , (5)

∀ (x, y) ∈ V̂ 2 : Cx,y = 1 + min
x′∈N+(x)

Rx′,y, (6)

∀x ∈ V : Cx,x = Rx,x = 0. (7)

The CADR (C op Against Drunk Robber) algorithm computes dctx,y (G) and the the optimal cop play for

every (x, y); drunken capture time dct (G) is computed from dct (G) = minx

∑
y ctx,y(G)

n . We now use Cx,y to
denote dctx,y (G). In other words Cx,y (Rx,y) is expected game duration after the cop’s (robber’s) move. Recall
that Py,y′ (x) is the probability of the robber transiting from y to y′, given that the cop is at x. The analog of
(3)-(4) is

∀ (x, y) ∈ V̂ 2 : R(i)
x,y =

∑
y′∈N(y)

Py,y′ (x)C(i−1)
x,y′ , (8)

∀ (x, y) ∈ V̂ 2 : C(i)
x,y = 1 + min

x′∈N+(x)
R

(i)
x′,y (9)

and the analog of (5)-(7) is

∀ (x, y) ∈ V̂ 2 : R (x, y) =
∑

y′∈N(y)

Py,y′ (x)Cx,y′ , (10)

∀ (x, y) ∈ V̂ 2 : Cx,y = 1 + min
x′∈N+(x)

Rx′,y. (11)

∀x ∈ V : Cx,x = Rx,x = 0. (12)

4



Actually (8)-(9) can be simplified. Since the drunk robber does not choose his moves, we can eliminate R(i)
x,y

from (10)-(11) and obtain the CADR algorithm recursion:

∀ (x, y) ∈ V̂ 2 : C(i)
x,y = 1 + min

x′∈N+(x)

 ∑
y′∈N(y)

Py,y′
(
x′
)
C

(i−1)
x′,y′

 . (13)

Eq. (13) is a version of the value iteration algorithm, introduced in [2] and further studied in [1, 6, 8, 10].
Both CAAR and CADR can be generalized for the case of k cops, replacing x by a k-tuple x = (x1, ..., xk).

Both algorithms provide the optimal cop strategy in feedback form Ux,y, i.e., the optimal cop move when the
cop/robber configuration is (x, y); this is achieved by recording a minimizing x′ in (13). CAAR similarly
provides an optimal robber strategy Wx,y.

The algorithms are described above in their Jacobi version, i.e., the (i− 1)-th matrix C(i−1) is stored and
used in the i-th iteration to compute C(i). An alternative approach is the Gauss-Seidel iteration, where a
single copy of C is stored and its elements are updated “in place”. Our package implements both the Jacobi
and Gauss-Seidel verions of the algorithms.

4 Usage

4.1 Nomenclature and Conventions

We will give detailed description for the usage of CopsRobber functions below, but it will be useful to remember
the following conventions.

The main quantities of interest always are C,R (the cops’ and robber’s target functions). For the case of a
single cop these quantitiies are denoted by C and R, respectively. Depending on whether the problem involves
an adversarial or drunk robber we use the suffixes a or d . For example Ca means the cop’s cost when facing
and adversarial robber. In our implementation C and R are matrices. For a single cop, they are n×n matrices,
with C(m,n) denoting the expected duration of the game when the cop is at node m and the robber at n; for
two cops, they are n × n × n matrices, with C(m1,m2,n) denoting the expected duration of the game when
the first cop is at node m1, the second at m2 and the robber at n. We use similar conventions for R, wherever
applicable. In certain cases (drunk robber) there is no occasion to use R and in such cases the empty matrix
R=[ ] may be used in its place (the empty matrix is Matlab construct).

Also of interest are U,W (the cops’ and robber’s feedback strategies). These are also matrices, of size n×n
or n × n × n, depending on whether we have one or two cops. These are denoted by U and W except that, if
we have two cops, we need two such matrices (one describes the strategy for cop no.1 and the second for cop
no.2) and then they are denoted as U1 and U2.

P will always denote the transition probability matrix for the cop-free random walk on graph G and in
our code will be denoted by P.

4.2 File Format

CopsRobber functions will need to read two kinds of files.

1. The first kind are graph files, used to describe a graph G. These are ASCII files, with one line per edge,
each line containing the numbers of the two respective nodes (nodes are always numbered as 1, 2, ..., n);
for example see the file Edge01b.txt. The user must make sure that a file of this type correctly represents
an undirected, connected graph without loops; if this is not the case, our code may produce wrong and
unexpected results.

2. The second kind are strategy files, used to describe a fixed strategy for the cop(s). These are also ASCII
files with number of lines equal to the number of rounds the strategy will be played; in other words the
first line describes the move(s) for round 1, ..., the T -th line the move(s) for round T . If the strategy
is for a one-cop game, the t-th line contains a single node number: where the cop should move at the

5



t-th round ; for a two-cop game the line contains two such numbers. The user must make sure that the
strategy is admissible (i.e., successive cop moves take place only along edges), otherwise the code may
again produce wrong and unexpected results.

Usually graph and strategy files are read by Matlab’s load command and copied into appropriate matrices
which are then used as input to the CopsRobber functions.

4.3 Syntax of the Functions

CRstrat: This function computes the expected and maximum capture time when the cop(s) use a fixed
strategy. It uses (2).

% function [p,Texp,Tmax]=CRstrat(P,X)
% compute expected capture time given fixed strategy X
%
% P: transition probability matrix for RW on graph G
% X: strategy as T-by-K matrix (T length of game, K number of cops)
% p: prob. of robber in node n at time t (T-by-N)
% Texp: expected capture time
% Tmax: maximum capture time

CRcaar: This function computes optimal strategies for one or two cops and an adversarial robber; the
optimal game duration is also computed. It is an implementation of the recursion (3)-(4) for one cop, or its
generalization for two cops.

% function [U1,U2,W,C,R]=CRcaar(P,T,thrs1,inf1,copnum,itermethod)
% optimal costs and strategies for the Cops + Adversarial Robber game
% it can handle 1 or 2 cops and use Jacobi or Gauss-Seidel value iteration
%
% P: N-by-N transition prob. matrix of G (used only for node connectivity)
% T: max number of iterations
% thrsh1: threshoild to break iteration
% inf1: initial value for C
% copnum: number of cops (allowed: 1 or 2)
% itermethod: iteration method (1: Jacobi, 2: Gauss-Seidel)
%
% ONE COP CASE:
% U1: N-by-N opt. cop move matrix; U1(mc,mr) is optimal move starting from (mc,mr)
% U2: empty matrix
% W: N-by-N opt. robber move matrix; W(mc,mr) is optimal move starting from (mc,mr)
% C: N-by-N opt. capture time matrix; C(mc,mr) is OCT starting from (mc,mr)
% and cop’s turn
% R: N-by-N opt. capture time matrix; R(mc,mr) is OCT starting from (mc,mr)
% and robber’s turn
%
% TWO COPS CASE:
% U1: N-by-N-by-N opt. cop1 move matrix; U1(mc1,mc2,mr) is optimal move starting
% from (mc1,mc2,mr)
% U2: N-by-N-by-N opt. cop2 move matrix; U2(mc1,mc2,mr) is optimal move starting
% from (mc1,mc2,mr)
% W: N-by-N-by-N opt. robber move matrix; W(mc1,mc2,mr) is optimal move starting
% from position (mc1,mc2,mr)
% C: N-by-N-by-N opt. capture time matrix; C(mc1,mc2,mr) is OCT starting from

6



% (mc1,mc2,mr) and cops’ turn
% R: N-by-N-by-N opt. capture time matrix; R(mc1,mc2,mr) is OCT starting from
% (mc1,mc2,mr) and robber’s turn

CRcadr: This function computes optimal strategies for one or two cops and a drunk robber; the expected
game duration is also computed. It is an implementation of the recursion (13) for one cop, or its generalization
for two cops.

% function [U1,U2,C]=CRcadr(P,T,thrs1,inf1,copnum,itermethod)
% optimal costs and strategies for the Cops + Drunk Robber game
% it can handle 1 or 2 cops and use Jacobi or Gauss-Seidel value iteration
%
% P: N-by-N transition prob. matrix of G (used only for node connectivity)
% T: max number of iterations
% thrsh1: threshoild to break iteration
% inf1: initial value for C
% copnum: number of cops (allowed: 1 or 2)
% itermethod: iteration method (1: Jacobi, 2: Gauss-Seidel)
%
% ONE COP CASE:
% U1: N-by-N optimal cop move matrix; U1(mc,mr) is optimal move starting
% from position (mc,mr)
% U2: empty matrix
% C: N-by-N optimal capture time matrix;C(mc,mr) is OCT starting from position
% (mc,mr) and cop’s turn
%
% TWO COPS CASE:
% U1: N-by-N-by-N optimal cop1 move matrix; U1(mc1,mc2,mr) is optimal move
% starting from position (mc1,mc2,mr)
% U2: N-by-N-by-N optimal cop2 move matrix; U2(mc1,mc2,mr) is optimal move
% starting from position (mc1,mc2,mr)
% C: N-by-N-by-N optimal capture time matrix; C(mc1,mc2,mr) is OCT starting
% from position (mc1,mc2,mr) and cops’ turn

CRsim: This function simulates a game between one or two cops and a drunk or adversarial robber. The
players follows feedback strategies (provided as matrices, in the format computed by the CRcaar and CRcadr
functions).

% function [X1,X2,Y,Z,CT]=CRsim(x10,x20,y0,P,U1,U2,W,Tmax,output)
% simulate (one OR two) cops vs. (adversarial OR drunk) robber
%
% x10: initial position of cop1
% x20: initial position of cop2 (use x20<0 for one cop play)
% y0: initial position of robber
% P: N-by-N transition prob. matrix of G (used only for node connectivity)
% U1: N-by-N optimal move matrix for cop1; U1(mc,mr) is optimal move starting from
% position (mc,mr)
% U2: N-by-N optimal move matrix for cop2; (if one cop game, use anything)
% W: N-by-N optimal robber move matrix; (for drunk robber use W=[])
% Tmax: max duration of game
% output: 1 (positions of cops+robber displayed) or 0 (positions of cops+robber

7



% not displayed)
%
% ONE COP CASE:
% X1: Tmax-by-1 cop position matrix
% X2: empty matrix
% Y: Tmax-by-1 robber position matrix
% Z: Tmax-by-1 cop-to-robber distance matrix
% CT: capture time
%
% TWO COPS CASE:
% X1: Tmax-by-1 cop1 position matrix
% X2: Tmax-by-1 cop2 position matrix
% Y: Tmax-by-1 robber position matrix
% Z: Tmax-by-1 min cop-to-robber distance matrix
% CT: capture time

CRcod: This function computes the cost of drunkenness (as given by (1)).

% function [F,CT,DCT,mopta,moptd]=CRcod(Ca,Ra,Cd)
% computes the cost of drunkenness
%
% Ca: matrix of cop-optimal capture times, either N-by-N (1 cop) or
% N-by-N-by-N (2 cops) / ADVERSARIAL robber
% Ra: matrix of rob-optimal capture times, either N-by-N (1 cop) or
% N-by-N-by-N (2 cops)/ ADVERSARIAL robber
% Cd: matrix of cop-optimal expected capture times, either N-by-N (1 cop) or
% N-by-N-by-N (2 cops) / DRUNK robber
% F: the cost of drunkennes, ratio of adversarial to drunk optimal capture times
% mopta: optimal initial positions, adversarial robber; 1-by-2 (1 cop)
% or 1-by-3 (2 cops)
% moptd: optimal initial positions, drunk robber; 1-by-1 (1 cop) or 1-by-2
% (2 cops)

CRcheq: This function checks that the C and R expected game durations (as computed by CRcaar or CRcadr)
satisfy the optimality equations (5)-(7) or (10)-(12).

% function [EC,ER]=CRcheq(C,R,P)
% check if C, R are solutions of the (adversarial or drunk) optimality equations
%
% C: cop cost matrix
% R: robber cost matrix (use empty matrix for drunk optim. equations)
% E: satisfaction matrix
% EC(mc,mr)=0 iff (mc,mr) cop eq. is satisfied
% ER(mc,mr)=0 iff (mc,mr) rob eq. is satisfied

5 Examples of Using CopsRobber

Details on use of the functions are given in the Matlab files. The user can also type CRdemo in the Matlab
command line and examples of the main CopsRobber functions will be run with commentary. In this section
let us present the usage of the main commands by examples along with usage comments.

We start Matlab and move to the directory which contains the code. We first type

8



>> P=grf2P01(’Edge01b.txt’);

to load a graph from the file Edge01b.txt (it is a text file with each line containing two node numbers,
i.e., an edge of the graph). The graph G with which we will work is P20, a path with 20 nodes.

On our first example we compute Texp and Tmax, the expected and maximum capture time for a drunk
robber and a fixed cop strategy X. We read the strategy from file strat01b.txt and invoke the function
CRstrat. The disp command prints Texp and Tmax.

>> X=load(’strat01b.txt’)
>> [p,Texp,Tmax]=CRstrat(P,X);
>> disp([Texp Tmax])

8.9665 18.0000

Next we will compute optimal strategies with the CAAR algorithm. First we determine certain algorithm
parameters.

>> T=200;
>> epsilon=0.01;
>> initial=0;
>> copnum=1;
>> itermethod=1;

T is the maximum number of iterations for which the aqlgorithm will run; epsilon is the termination
crieterion ε; initial is the initial value for C(0), R(0); copnum is the number of cops; itermethod=1 means
we will use the Jacobi iteration. Now we are ready to invoke the CAAR aglorithm as follows.

>> [U1,U2,W,Ca,Ra]=CRcaar(P,T,epsilon,initial,copnum,itermethod);

The algorithm runs and produces the following output (time step and max difference between old and
updated C and R values).

1 1.000000
2 1.000000
...
19 1.000000
20 0.000000

We now have U1,W,Ca,Ra, the U,W,C,R matrices of optimal moves for cop and adversarial robber (CRcaar
also outputs U2, the optimal moves for the second cop, which in the one-cop problem is an empty matrix).
We will now check that the obtained C and R satisfy the optimality equations (5)-(7). To this end we run

>> [EC,ER]=CRcheq(Ca,Ra,P);
>> disp([ sum(sum(EC)) sum(sum(ER))])

0 0

The first command invokes CRcheq.m, which returns two N × N matrices. ECx,y equals zero if Cx,y =
1 + minx′ Rx′,y (and Cx,x = 0 ) and one otherwise (similarly for ER). Hence summing all elements of the
matrices (by the second command) we see that no equations are violated; in other words we have obtained the
unique solution of (5)-(7).

We can run CAAR on the same graph using two cops (and then check the solution) as follows.

>> copnum=2;
>> [U1,U2,W,C,R]=CRcaar(P,T,thrs1,inf1,copnum,itermethod);
>> [EC,ER]=CRcheq(C,R, P);
>> disp([ sum(sum(sum(EC))) sum(sum(sum(ER)))])

9



Note the triple sums in the last command; they are needed because in our implementation C and R are
N ×N ×N matrices.

We can also run the CADR algorithm (for one cop) and check the solutions as follows.

>> copnum=1;
>> [U1,U2,Cd]=CRcadr(P,T,thrs1,inf1,copnum,itermethod);
>> [EC,ER]=CRcheq(Cd,[], P);
>> disp([ sum(sum(EC)) sum(sum(ER))])

Note the R matrix used as input to CRcheq. It is the second, empty ([ ]) matrix. Since the robber is
drunk, CRcheq does not produce any R output. Let us use the obtained cost matrices Ca , Ra , Cd to compute
the cost of drunkenness F .

>> [F,CT,DCT,mopta,moptd]=CRcod(Ca,Ra,Cd);
>> disp([CT DCT F])

10.0000 4.4588 2.2428

The optimal capture time (for adversarial robber) is CT = 10, the expected capture time (for adversarial
robber) is DCT = 4.4588 and the cost of drunkenneess is F = CT

DCT = 2.2428.
Finally, we can simulate a game between one cop and a drunk robber. First we give values to the simulation

parameters.

>> x10=1;
>> x20=-1;
>> y0=5;
>> Tmax=100;
>> output=1;

The initial position of the first cop is x10=1. The initial position of the second cop is taken as x20=-1 to
indicate there is actually a single cop. The initial position of the robber is y0=5. We will use a maximum of
Tmax=100 steps in the simulation and output=1 means the program will actually print out the cop and robber
positions for every time step. Now we can run the CRSim command, which produces the following output.

>> [X1,X2,Y,Z,CT]=CRsim(x10,x20,y0,P,U1,U2,[],Tmax,output);

0 1 15 14
1 2 16 14
2 3 15 12
3 4 16 12
....
14 15 17 2
15 16 18 2
16 17 17 0

The first column is time, the second is the cop’s position and the thrird the robber’s position; the final column
shows the cop-robber distance, when this becomes zero the robber is captured.

References

[1] J. Bertsekas and J. Tsitsiklis. Parallel and Distributed Computation. Addison-Wesley, 1989.

[2] J.H. Eaton and L.A. Zadeh, Optimal pursuit strategies in discrete-state probabilistic systems, Trans.
ASME Ser. D, J. Basic Eng, vol. 84, pp. 23–29,1962.

[3] G. Hahn and G. MacGillivray, A note on k-cop, l-robber games on graphs, Discrete Mathematics, 306,
2492–2497, 2006.

10



[4] Ath. Kehagias and P. Pralat, “Cops and visible robbers: a computational approach”, Technical Report,
available at http://users.auth.gr/~kehagiat/GraphSearch/TRCODvis.pdf.

[5] Ath. Kehagias and P. Pralat, “Some remarks on cops and drunk robbers”, Submitted for publication.

[6] R. Pallu de la Barriere. Optimal Control Theory. Dover, 1980.

[7] R. Nowakowski and P. Winkler, Vertex to vertex pursuit in a graph, Discrete Mathematics 43 (1983)
230–239.

[8] M. L. Puterman. Markov Decision Processes, Wiley, 1994.

[9] A. Quilliot, Jeux et pointes fixes sur les graphes, Ph.D. Dissertation, Université de Paris VI, 1978.

[10] D. J. White, Markov decision processes, Wiley, 1993.

11


