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Abstract

We consider the cops and robber game, in which one or more cops move on a graph G with the goal of
capturing a robber. The robber may be adversarial (he moves so as to avoid capture) or drunk (he performs
a random walk on G). Our goal is to estimate the cost of drunkenness (COD), i.e., the ratio of capture times
for the adversarial and drunk robber. We briefly review some theoretically obtained bounds on COD and
then concentrate on the CAAR and CADR algorithms for COD computation. We have implemented the
algorithms as a (publicly available) Matlab package which we briefly present and then use to experimentally
evaluate the algorithms.

1 Introduction

The Cops and Robbers (CR) game [8, 10] is played on an undirected graph G, where k cops and a robber move
in rounds, according to the following rules.

1. In the initial (placement) round the cops choose their initial positions (more than one cop can be in the
same node) and then the robber chooses his position.

2. In each of the following rounds, first the cops and then the robber move to nodes neighboring their
current positions. Staying in place is also allowed.

It is assumed that the robber is visible to the cops, i.e., they always know his position; similarly, the robber
always knows the cops’ positions.

The cops’ goal is to “capture” the robber, i.e., to reach a position where at least one cop occupies the same
node as the robber. It is assumed that the cops will always play optimally. In the “classical” version of the
CR game, the robber is adversarial, i.e., his goal is to avoid capture and he plays optimally with respect to
this end. Given a large enough k the cops can win on any graph (for example, if one cop occupies each node).
The minimum k required to guarantee that the cops win on G is called the cop number of G.

We are also interested in a variant of the CR game in which the robber is “drunk”, i.e., he is not interested
in avoiding capture and simply performs a random walk on G. The cops are still assumed to play optimally.
In [6] we have studied this game and especially the “cost of drunkenness”, i.e., the ratio of capture times for
the adversarial and drunk robber. Our approach in [6] is mainly theoretical, but we also present algorithms
which can be used to compute the cost of drunkenness.

In this technical report we discuss these algorithms in more detail, present their Matlab implementation
(the package CopsRobber, available at http://users.auth.gr/~kehagiat/GraphSearch/) and evaluate them
by a series of computer experiments. The report is structured as follows. In Section 2 we present definitions and
notation. In Section 3 we show how to compute capture time given a predetermined cop schedule (independent
of the robber’s position). In Section 4 we present the CAAR and CADR algorithms; these iterative algorithms
compute capture time and optimal cop strategy (against an adversarial and a drunk robber respectively). In
Section 5 we present the Matlab implementation of the algorithms. In Section 6 we evaluate CAAR and
CADR with computer experiments. In Section 7 we summarize and list possible future research directions.

1



2 Preliminaries

Let G = (V,E) be a fixed undirected, simple, finite graph without loops. We also assume that G is connected
(since the game played on a disconnected graph can be analyzed by investigating each component separately).
We will use the following notation and assumptions.

1. N (v) denotes the neighborhood of node v ∈ V and N+ (v) = N (v) ∪ {v} (the closed neighborhood of
v).

2. We define V̂ 2 = V × V − {(x, x) : x ∈ V }, i.e., V 2 excluding the diagonal.

3. The minimum number of cops required to capture the adversarial robber is called the cop number of G
and is denoted by c(G).

4. Given k cops, Xi
t denotes the position of the i-th cop at time t (i ∈ {1, 2, . . . , k}, t ∈ {0, 1, 2, . . .});

Xt = (X1
t , . . . , X

k
t ) denotes the vector of all cop positions at time t; X = (X0, X1, X2, . . .) denotes the

positions of all cops during the game (X may have finite or infinite length).

5. Yt denotes the position of the robber at time t and Y = (Y0, Y1, Y2, . . .) the positions of the robber during
the game.

6. The moving sequence is as follows: first the cops choose initial positions X0, then the robber chooses Y0.
For the following rounds ( t ∈ {1, 2, . . .}) first the cops choose Xt and then the robber chooses Yt.

7. The capture time is denoted by T and defined as follows

T = min{t : ∃i such that Xi
t = Yt},

i.e., it is the first time a cop is located at the same vertex as the robber (note that this can happen either
after the cops move or after the evader moves). When k ≥ c(G) we will have T < ∞ (since c(G) cops
can capture the adversarial robber they can also capture the drunk one).

Assume for the moment that both the cops and the robber are adversarial. Given initial cop positions
x ∈ V k and robber position y ∈ V , we let ctx,y(G, k) = T . The k-capture time is defined as follows:

ct(G, k) = min
x∈V k

max
y∈V

ctx,y(G, k).

In other words, the players choose their initial positions so as to achieve the best outcome. Finally, when
k = c(G) we simply write ct(G) instead of ct(G, c(G)), and call it the capture time instead of c(G)-capture
time. Let us stress one more time that the above quantities are defined under the assumption of optimal play
by both players.

Now let us assume that the cops are adversarial but the robber is drunk. More specifically, we assume the
robber performs a random walk on G, i.e., given that he is at vertex v ∈ V at time t, he moves to u ∈ N(v)
at time t+ 1 with probability equal to 1/|N(v)|. Note that we do not include v in N(v) and that the robber
probability distribution does not depend on the current cops position (in particular, it can happen that the
robber moves to a vertex occupied by a cop; something the adversarial robber would never do).

Under the above assumptions, the drunk robber game actually is a one-player game. Also, for a given
initial configuration and for a given strategy of cops, the capture time T is a random variable. Let

dctx,y (G, k) = E (T | X0 = x, Y0 = y, k cops are used optimally) ,

in other words, dctx,y (G, k) is the expected capture time given initial cop and robber configurations x, y and
optimal play by the k cops. The drunk robber chooses an initial vertex randomly with uniform probability.
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Cops are aware of this and so they choose an initial configuration that minimizes the expected game length.
Hence, we define the expected k-capture time as follows:

dct (G, k) = min
x∈V k

∑
y∈V

dctx,y (G, k)
|V |

.

As before, dct(G) = dct(G, c(G)).
We define the cost of drunkenness as follows

F (G) =
ct(G)
dct(G)

;

we obviously have F (G) ≥ 1.
In this report we concentrate on the case k ≥ c(G). However let us note that even a single cop can catch

the drunk robber: in [6] we have shown that dct(G, k) < ∞ for any connected graph G and k ≥ 1 (even for
k < c(G)).

Let us also present without proof our main results from [6]. The next theorem shows that, in general, the
cost of drunkenness can be any number c ∈ (1,∞).

Theorem 2.1 For every real constant c ≥ 1, there exists a sequence of graphs (Gm) such that

lim
m→∞

F (Gm) = lim
n→∞

ct(Gm)
dct(Gm)

= c.

However the following theorems show that, for particular graph families, sharper bounds can be obtained.

Theorem 2.2 Let Pn denote the path with n nodes. Then

n

4
·
(

1−O
(

log n
n

))
≤ dct (Pn) ≤ n

4
;

in particular, dct(Pn) = (1 + o(1))n/4. The cost of drunkenness is

F (Pn) =
ct(Pn)
dct(Pn)

= 2 + o(1).

Theorem 2.3 Let Cn denote the cycle with n nodes. Then

n

8
·
(

1−O
(

log n
n

))
≤ dct(Cn) ≤ n+ 1

8
;

in particular, dct(Cn) = (1 + o(1))n/8. The cost of drunkenness is

F (Cn) =
ct(Cn)
dct(Cn)

= 2 + o(1).

Theorem 2.4 Let Td,k denote the d-regular rooted tree of depth k. Then

k −O(
√
k log k) ≤ dct(Td,k) ≤ k;

in particular, dct(Td,k) = (1 + o(1))k. The cost of drunkenness is

F (Td,k) =
ct(Td,k)
dct(Td,k)

= 1 + o(1).

Theorem 2.5 Let Γm denote the m×m grid (it is Γm = Pm�Pm, the product of the n-node-path with itself).
Then dct(Γm) = (1 + o(1))3

8m. The cost of drunkenness is

F (Pm�Pm) =
ct(Pm�Pm)
dct(Pm�Pm)

= 8/3 + o(1).

The above results notwithstanding, sharp bounds on F (G) for an arbitrary G cannot be easily obtained.
Hence in the following sections we turn to computational approaches to the problem.
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3 Computing the expected capture time for a fixed cop strategy

Suppose that, for a given a graph G, the cops fix a strategy before the game starts, i.e., the cop moves are
determined before any robber moves are observed. We will now show how to explicitly compute the probability
of capture at time t ∈ {0, 1, 2, . . .} as well as the expected capture time.

Before proceeding, let us note that the cops would do better if they adjusted their moves depending on the
robber moves; this will be treated in the Section 4. However, the approach presented here is less demanding
computationally and can be used to provide an upper bound for the optimal expected capture time.

Let G = (V,E) have n nodes: V = {0, 1, . . . , n− 1}. Letting Pi,j = Pr (Yt = j|Yt−1 = i) we have

Pi,j =
{ 1
|N(i)| for j ∈ N(i)

0 otherwise.

P is the n× n transition probability matrix governing the robber’s random walk in G in the absence of cops.
To account for capture by the cops, define a new state space V = V ∪ {n}, i.e., the old state space augmented
by the capture state n. The corresponding (n+ 1)× (n+ 1) transition matrix is

P =
(
P 0
0 1

)
.

In the absence of cops, the robber performs a standard random walk on G and never enters the capture state;
if however he somehow gets captured, he remains so ad infinitum: Pn,n = 1. In other words, the Markov chain
governed by P contains two noncommunicating equivalence classes: {0, 1, . . . , n− 1} and {n}.

Suppose now that a single cop is located in vertex x. We will denote the corresponding transition probability
matrix by P (x). Obviously, P (x) 6= P . The difference is caused by the possibility of capture. This can occur
in two ways.

1. The robber is located at y and, in the first phase of the t-th round, the cop moves into x = y. Then the
robber is captured w.p.1. So, P x,n (x) = 1, P x,y′ (x) = 0 for y′ < n.

2. The robber is located at y 6= x and, in the second phase of the t-th round, he moves from y to y′ = x.
Hence the robber is captured w.p. Py,y′ . So, for all y ∈ V − {x}, P y,n (x) = Py,x, P y,x′ (x) = 0.

We can summarize the above by writing

P (x) =
(
P (x) p (x)

0 1

)
where P (x) has 0’s in the x-th row and column and the corresponding probabilities have been moved into the
p (x) vector. For example, let G be the path with 5 nodes; we list below P and P (2):

P =


0 1 0 0 0 0

1/2 0 1/2 0 0 0
0 1/2 0 1/2 0 0
0 0 1/2 0 1/2 0
0 0 0 1 0 0
0 0 0 0 0 1

 , P (2) =


0 1 0 0 0 0

1/2 0 0 0 0 1/2
0 0 0 0 0 1
0 0 0 0 1/2 1/2
0 0 0 1 0 0
0 0 0 0 0 1

 .

Especially for the placement round of the game (t = 0) we need a different matrix, because the robber does
not random-walk, but simply chooses an initial position; if he chooses the one already occupied by the cop,
then he is captured. Hence, for this round the appropriate transition matrix is P̂ (x), which is the unit matrix
with the one of the x-th row moved to the (n+ 1)-th column.

Let π(t) = [π0(t), ..., πn(t)], where πi(t) = P(Yt = i) for i ∈ V and t ∈ {0, 1, ..., s}. Given a strategy
X = (x0, x1, ..., xs) and π̂ (0) =

[
1
n , ...,

1
n , 0
]
, , the above formulation yields

π (0) = π̂ (0) P̂ (x0) and, for t ∈ {1, 2, ...} , π (t) = π (t− 1)P (xt)
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which also gives π (t) = π̂ (0) P̂ (x0)P (x1) ...P (xt). To illustrate, let us continue the previous example. Sup-
pose a single cop enters the path and follows the strategy X = (0, 1, 2, 3, 4) (start on the left end of the path
and move to the right). Then we have

π (0) = π̂ (0) P̂ (0) =
[

1
5

1
5

1
5

1
5

1
5 0

]


0 0 0 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 =
[

0 1
5

1
5

1
5

1
5

1
5

]
,

π (1) = π (0)P (1) =
[

0 1
5

1
5

1
5

1
5

1
5

]


0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 1/2 0 1/2
0 0 1/2 0 1/2 0
0 0 0 1 0 0
0 0 0 0 0 1

 =
[

0 0 1
10

3
10

1
10

1
2

]
,

π (2) = π (1)P (2) =
[

0 0 1
10

3
10

1
10

1
2

]


0 1 0 0 0 0
1/2 0 0 0 0 1/2
0 0 0 0 0 1
0 0 0 0 1/2 1/2
0 0 0 1 0 0
0 0 0 0 0 1

 =
[

0 0 0 1
10

3
20

3
4

]
,

π (3) = π (2)P (3) =
[

0 0 0 1
10

3
20

3
4

]


0 1 0 0 0 0
1/2 0 1/2 0 0 0
0 1/2 0 0 0 1/2
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1

 =
[

0 0 0 0 0 1
]
.

The elements πn(t) give the probabilities Pr(Xt = n) at time t, i.e., the probabilities of capture in at most
t steps. The probabilities of capture exactly at time t are given by πn(t) − πn(t − 1). The expected capture
time (conditional on strategy X being used) is

ET =
∞∑

t=1

t · ((πn(t)− πn(t− 1))) .

In the above example we have

ET = 1 ·
(

1
2
− 1

5

)
+ 2 ·

(
3
4
− 1

2

)
+ 3 ·

(
1− 3

4

)
=

31
20
.

The approach can be generalized to more than one cops, by letting x = (x1, x2, . . . , xk) be a configuration
of cops and defining P (x), P (x) analogously to the one cop case. Given that the cops follow the strategy
X = (X1, X2, . . . , Xs), the transition probabilities of Y satisfy

Pr(Yt = j | Yt−1 = i) = Pi,j(Xt)

for t ≤ s. So the robber process is an inhomogeneous Markov chain, with the transitions controlled by the
cops’ actions. Markov chains of this type are called Markov Decision Processes (MDP) or Controlled Markov
Processes, where the control function is Xt; it is a (stochastic) control in the sense that it allows us to change
the transition probabilities of Yt. We can use the MDP formulation to compute ET for any given strategy X
in reasonable time. Computing the optimal strategy is not computationally viable; for example, with |V | = n
and k cops there may exist up to (nk)t strategies of length t (and corresponding ET ’s) to evaluate. In the next
section we will present a viable approach to compute the optimal strategy.

MDP’s were introduced in the book [4]; book-length treatments are [1, 7, 9, 11]; an online tutorial is [5].
MDP’s have been applied to a version of the cops-robber problem in [2].

4 Computing the expected capture time for the optimal cop strategy

In this section we will show how to compute F (G) = ct(G)
dct(G) for an arbitrary G. This reduces to computing

ct(G) and dct(G), which can be achieved by algorithms which have previously appeared in the literature. To
improve the presentation we assign a name to each algorithm and make a few notational modifications; also
we point out the similarity between the two algorithms which apparently has not been noticed before.
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1. The CAAR (Cop Against Adversarial Robber) algorithm computes ctx,y (G) for every initial cop/robber
configuration (x, y). In addition, CAAR computes the optimal cop and robber play for every (x, y).
Capture time ct (G) is easily computed from ct (G) = minx maxy ctx,y (G).

2. Similarly, the CADR (Cop Against Drunk Robber) algorithm computes dctx,y (G) and the the optimal

cop play for every (x, y); drunken capture time dct (G) is computed from dct (G) = minx

∑
y dctx,y(G)

n .

4.1 The CAAR Algorithm

The CAAR (Cop Against Adversarial Robber) algorithm computes ctx,y (G) for every initial cop/robber
configuration (x, y). In addition, CAAR computes the optimal cop and robber play for every (x, y). Capture
time ct (G) is easily computed from ct (G) = minx maxy ctx,y (G).

CAAR was introduced by Hahn and MacGillivray in [3]. We present the algorithm for the case of a single
cop (the generalization for more than one cops is obvious). Changing notation, we use Cx,y to denote the
game duration when the cop is located at x, the robber at y and it’s the cop’s turn to move (in other words
Cx,y equals ctx,y (G)). Similarly Rx,y denotes game duration when it’s the robber’s turn to move. For both
Cx,y and Rx,y we asssume optimal play by both cop and robber. CAAR consists of the following recursion (for
i = 1, 2, ...):

∀ (x, y) ∈ V̂ 2 : R(i)
x,y = max

y′∈N+(y)
C

(i−1)
x,y′ , (1)

∀ (x, y) ∈ V̂ 2 : C(i)
x,y = 1 + min

x′∈N+(x)
R

(i)
x′,y. (2)

C and R are initialized with C
(0)
x,y = R

(0)
x,y =∞ for all x 6= y. We set C(i)

x,x = R
(i)
x,x = 0 for i = 0, 1, 2, ... . In the

limit i→∞, CAAR computes the solution of the equations

∀ (x, y) ∈ V̂ 2 : Rx,y = max
y′∈N+(y)

Cx,y′ , (3)

∀ (x, y) ∈ V̂ 2 : Cx,y = 1 + min
x′∈N+(x)

Rx′,y, (4)

∀x ∈ V : Cx,x = Rx,x = 0. (5)

The interpretation of the equations is the following. Equation (3) says: from configuration (x, y) the robber
moves so as to maximize the length of the game; similarly, (4) describes the cop’s goal to minimize the game
duration (since the cop moves in the first phase of each round, 1 time unit must be added to minRx′,y); finally
(5) says that the game ends when cop and robber occupy the same vertex.

The original version of CAAR, as presented in [3], does not actually use a separate copy of C(i) and R(i)

for each value of i. Rather, the changes are made “in place”, using the update rule

∀ (x, y) ∈ V̂ 2 : Rx,y ← max
y′∈N+(y)

Cx,y′ , (6)

∀ (x, y) ∈ V̂ 2 : Cx,y ← 1 + min
x′∈N+(x)

Rx′,y, . (7)

In other words, the above version (introduced in [3]) uses Gauss-Seidel iteration (while our version (1)-(2) uses
Jacobi iteration). The initializations used in [3] are

∀ (x, y) ∈ V̂ 2 : Cx,y ←∞, Rx,y ←∞ (8)
∀x ∈ V : Cx,x ← 0, Rx,x ← 0. (9)

Hahn and MacGillivray [3] prove that (6)-(9) converges to the solution of (3)-(5) in a finite number of steps
(provided c (G) = 1).

CAAR provides the optimal cop strategy in feedback form Ux,y, i.e., the optimal cop move when the
cop/robber configuration is (x, y). This is achieved by recording a minimizing x′. The optimal robber strategy
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Wx,y (for the adversarial robber) is obtained similarly. For every (x, y) configuration we can have more than
one optimal move, but they all yield the same (optimal) game duration.

CAAR can be generalized for the case of k cops, replacing x by a k-tuple x = (x1, ..., xk); however the
necessary computations are exponential in k, hence the algorithm is computationally viable only for small k
(our implementation CopsRobber allows the values k ∈ {1, 2}) and “relatively small” |V | .

The Jacobi version of the CAAR algorithm is described in pseudocode as follows (for the Gauss-Seidel
version, simply remove the i index).

Algorithm 1 The CAAR Algorithm
Input: Node set V , neighborhoods N (x) (for all x ∈ V )
i = 0
C

(i)
x,y =∞ for all (x, y) ∈ V̂ 2

R
(i)
x,y =∞ for all (x, y) ∈ V̂ 2

C
(i)
x,x = 0 for all x ∈ V

R
(i)
x,x = 0 for all x ∈ V

while C(i) 6= C(i−1) do
i = i+ 1
for all (x, y) ∈ V̂ 2 do
R

(i)
x,x = 0 for all x ∈ V

C
(i)
x,x = 0 for all x ∈ V

R
(i)
x,y = maxy′∈N+(y)C

(i−1)
x,y′

W
(i)
x,y = arg maxy′∈N+(y)C

(i−1)
x,y′

C
(i)
x,y = 1 + minx′∈N+(x)R

(i)
x′,y

U
(i)
x,y = arg minx′∈N+(x)R

(i)
x′,y

end for
end while
C = C(i), R = R(i), U = U (i), W = W (i)

Output: expected capture times C,R, optimal moves U,W

4.2 The CADR Algorithm

The CADR (Cop Against Drunk Robber) algorithm computes dctx,y (G) and the the optimal cop play for

every (x, y); drunken capture time dct (G) is computed from dct (G) = minx

∑
y ctx,y(G)

n .
Extending the CAAR idea to the drunk robber game, let us now use Cx,y to denote dctx,y (G). In other

words Cx,y (resp., Rx,y) is expected game duration after the cop’s (resp., robber’s) move. Recall (Section
3) that Py,y′ (x) is the probability of the robber transiting from y to y′, given that the cop is at x; note that
P (x) is a substochastic matrix. The analog of (1)-(2) is

∀ (x, y) ∈ V̂ 2 : R(i)
x,y =

∑
y′∈N(y)

Py,y′ (x)C(i−1)
x,y′ , (10)

∀ (x, y) ∈ V̂ 2 : C(i)
x,y = 1 + min

x′∈N+(x)
R

(i)
x′,y (11)

and the analog of (3)-(5) is

∀ (x, y) ∈ V̂ 2 : R (x, y) =
∑

y′∈N(y)

Py,y′ (x)Cx,y′ , (12)

∀ (x, y) ∈ V̂ 2 : Cx,y = 1 + min
x′∈N+(x)

Rx′,y. (13)

∀x ∈ V : Cx,x = Rx,x = 0. (14)
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We want (10)-(11) to converge to the solution of (12)-(14).
Actually (10)-(11) can be simplified. Since the drunk robber does not choose his moves, we can eliminate

R
(i)
x,y from (12)-(13) and obtain the CADR algorithm recursion:

∀ (x, y) ∈ V̂ 2 : C(i)
x,y = 1 + min

x′∈N+(x)

 ∑
y′∈N(y)

Py,y′
(
x′
)
C

(i−1)
x′,y′

 . (15)

This is the Jacobi-iteration version of CADR; a Gauss-Seidel version can also be used.
Before we discuss convergence of the CADR algorithm, we must discuss its connection to MDP’s. Consider

a general MDP process with state space S, control or action space A, transition matrix Q and cost matrix
G (a) (i.e., Gs,s′ (a) is the cost of transition s → s′ using action a). The state space satisfies S = ST ∪ SA,
where ST are the transient states and SA the absorbing ones; it is assumed that transitions after absorption
have zero cost: Gs,s′ (a) = 0 for s, s′ ∈ SA. Let Cs be the expected total cost of the process starting from
state s and continuing until absorption. Then [7] C satisfies the equations

∀s ∈ ST : Cs = min
a∈A

Gs,s′ (a) +
∑

s′∈ST

Qs,s′ (a)Cs′

 (16)

and the solutions to (16) can be obtained by the following value iteration:

∀s ∈ ST : C(i)
s = min

a∈A

Gs,s′ (a) +
∑

s′∈ST

Qs,s′ (a)C(i−1)
s′

 . (17)

Once again, (17) is the Jacobi version of value iteration; a Gauss-Seidel version can also be used.
While we have derived (15) from (10)-(11), which we see as an analog of (1)-(2), we will now show that

(15) is a version of (17). To this end, let us take ST = V̂ 2 and A = V ; in other words, states s = (x, y) are
cop/robber configurations and actions a = x′ are new cop positions. Regarding move costs: (a) before capture
every move has unit cost, (b) after capture only moves of the form (x, x)→ (x, x) are possible and these have
zero cost; in short

G(x,y),(x′,y′)

(
x′
)

=
{

1 iff x 6= y
0 else.

Finally,

Q(x,y),(x′,y′)′ (a) =
{
Py,y′ (x) iff a = x′ and x′ ∈ N+ (x) and y′ ∈ N (y)
0 else.

Using the above, it is easy to reduce (17) to (15).
Returning to convergence issues, value iteration has been studied by several authors, in various degrees

of generality [2, 4, 11]. For our purposes the following result [2] is sufficient: if a proper strategy1 exists, the
Jacobi version of CADR will converge (to the unique solution of (16) ) for any C(0) which satisfies

∀ (x, y) ∈ V̂ 2 : C(0)
x,y ≥ 0.

We have proved in [6] that the cop has a proper strategy for every G. Hence CADR converges (to the unique
solution of (12)-(14) ) for arbitrary (nonnegative) initialization C(0). Convergence of the Gauss-Seidel version
has also been proved.

CADR (similarly to CAAR) provides the optimal cop strategy in feedback form Ux,y, i.e., the optimal cop
move when the cop/robber configuration is (x, y). This is achieved by recording a minimizing x′ in (15).

CADR can also be generalized for the case of k cops, replacing x by a k-tuple x = (x1, ..., xk) (again, our
CopsRobber implementation allows the values k ∈ {1, 2}). Also CADR will work for any transition probability
matrix P , not just for random walks. Hence, if desired, we can compute the cost of drunkenness for any

1I.e., a strategy which yields finite expected cost.
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number of cops (not just for k = c (G)) and for non-uniform random walks (birth-and-death processes) and
other kinds of Markovian robbers.

The Jacobi version of the CADR algorithm is described in pseudocode as follows (for the Gauss-Seidel
version, simply remove the i index).

Algorithm 2 The CADR Algorithm
Input: Node set V , neighborhoods N (x) (for all x ∈ V ), transition matrix P , initialization level M ,
termination criterion ε
i = 0
C

(i)
x,y = M for all (x, y) ∈ V̂ 2

C
(i)
x,x = 0 for all x ∈ V

while
∣∣C(i) − C(i−1)

∣∣ < ε do
i = i+ 1
for all (x, y) ∈ V̂ 2 do
C

(i)
x,x = 0 for all x ∈ V

C
(i)
x,y = 1 + minx′∈N+(x)

(∑
y′∈N(y) Py,y′C

(i−1)
x′,y′ )

)
U

(i)
x,y = arg minx′∈N+(x)

(∑
y′∈N(y) Py,y′C

(i−1)
x′,y′

)
end for

end while
C = C(i), U = U (i)

Output: expected capture times C, optimal moves U

4.3 Computing the Cost of Drunkennes

F (G) can be easily computed from ct (G) and dct (G). Recall the definition of F (G) :

F (G) =
ct (G)
dct (G)

=
minx∈V maxy∈V ctx,y (G)

minx∈V

(
1
|V |
∑

y∈V dctx,y (G)
) . (18)

Since ctx,y (G) = Cx,y as computed by CAAR and dctxy (G) = Cx,y as computed by CADR, (18) can be easily
computed after completion of these algorithms.

The optimal initial positions for the cops and robber can also be easily computed once ctx,y (G) and
dctxy (G) are available. Consider the two terms of the fraction in (18).

1. The denominator concerns the drunk CR game, which (as already mentioned) is a one-player game.
Since the cost to the cop for starting in position x is 1

|V |
∑

y∈V dctx,y (G), his optimal starting position
will be x∗ = arg minx∈V

1
|V |
∑

y∈V dctx,y (G) (there may be more than one such x∗).Hence

dct (G) =
1
|V |

∑
y∈V

dctx∗,y (G) = min
x∈V

 1
|V |

∑
y∈V

dctx,y (G)


2. The numerator concerns the adversarial CR game. Since the cop plays first and he can expect the optimal

response by the robber, he will choose x∗ = arg minx∈V maxy∈V ctx,y (G). The robber will observe x∗

(since he plays after the cop) and will play y∗ = arg maxy ctx∗,y (G)2. In short,

ct (G) = ctx∗,y∗ (G) = min
x∈V

max
y∈V

ctx,y (G) .

2Note that the situation would be different if cop and robber chose their initial positions simultaneously; then we would have
a zero-sum two-player game in normal form and it might be advisable to use mixed strategies.
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5 The CopsRobber Package

In the current section we give a brief presentation of our Matlab package CopsRobber. The package is pub-
licly available and can be downloaded from http://users.auth.gr/~kehagiat/GraphSearch/; installation
consists in unpacking the contents of the file CopsRobbers.zip into a directory and adding it to the Matlab
path. The main CopsRobber functions are the following.

CRstrat.m Compute expected capture time for a fixed strategy and adversarial robber
CRcaar.m Compute optimal capture times and optimal moves for cops and adv. robber
CRcadr.m Compute expected capture times and optimal moves for cops and drunk robber
CRsim.m Simulate cops and (adv. or drunk) robber playing feedback strategies
CRcod.m Compute the cost of drunkenness
CRcheq.m Checks that a pair of C (and R) satisfy the optimality equations

Table 1

Details on use of the functions are given in the Matlab files. Let us present the usage of the main commands
by examples along with usage comments (the user can test all the examples listed below by typing CRdemo.m
in the Matlab command lie).

We start Matlab and move to the directory which contains the code. We first type

>> P=grf2P01(’Edge01b.txt’);

to load a graph from the file Edge01b.txt (it is a text file with each line containing two node numbers,
i.e., an edge of the graph). The graph G with which we will work is P20, a path with 20 nodes.

On our first example we compute Texp and Tmax, the expected and maximum capture time for a drunk
robber and a fixed cop strategy X. We read the strategy from file strat01b.txt and invoke the function
CRstrat. The disp command prints Texp and Tmax.

>> X=load(’strat01b.txt’)
>> [p,Texp,Tmax]=CRstrat(P,X);
>> disp([Texp Tmax])

8.9665 18.0000

Next we will compute optimal strategies with the CAAR algorithm. First we determine certain algorithm
parameters.

>> T=200;
>> epsilon=0.01;
>> initial=0;
>> copnum=1;
>> itermethod=1;

T is the maximum number of iterations for which the aqlgorithm will run; epsilon is the termination
crieterion ε; initial is the initial value for C(0), R(0); copnum is the number of cops; itermethod=1 means
we will use the Jacobi iteration. Now we are ready to invoke the CAAR aglorithm as follows.

>> [U1,U2,W,Ca,Ra]=CRcaar(P,T,epsilon,initial,copnum,itermethod);

The algorithm runs and produces the following output (time step and max difference between old and
updated C and R values).

1 1.000000
2 1.000000
...
19 1.000000
20 0.000000
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We now have U1,W,Ca,Ra, the U,W,C,R matrices of optimal moves for cop and adversarial robber (CRcaar
also outputs U2, the optimal moves for the second cop, which in the one-cop problem is an empty matrix).
We will now check that the obtained C and R satisfy the optimality equations (3)-(5). To this end we run

>> [EC,ER]=CRcheq(Ca,Ra,P);
>> disp([ sum(sum(EC)) sum(sum(ER))])

0 0

The first command invokes CRcheq.m, which returns two N ×N matrices. EC(x,y) equals zero if Cx,y =
1+minx′ Rx′,y (and Cx,x = 0 ) and one otherwise (similarly for ER). Hence summing all elements of the matrices
(by the second command) we see that no equations are violated; in other words we have obtained the unique
solution of (3)-(5).

We can run CAAR on the same graph using two cops (and then check the solution) as follows.

>> copnum=2;
>> [U1,U2,W,C,R]=CRcaar(P,T,thrs1,inf1,copnum,itermethod);
>> [EC,ER]=CRcheq(C,R, P);
>> disp([ sum(sum(sum(EC))) sum(sum(sum(ER)))])

Note the triple sums in the last command; they are needed because in our implementation C and R (and
also EC and ER)are N ×N ×N matrices.

We can also run the CADR algorithm (for one cop) and check the solutions as follows.

>> copnum=1;
>> [U1,U2,Cd]=CRcadr(P,T,thrs1,inf1,copnum,itermethod);
>> [EC,ER]=CRcheq(Cd,[], P);
>> disp([ sum(sum(EC)) sum(sum(ER))])

Note the R matrix used as input to CRcheq. It is the second, empty ([ ]) matrix. Since the robber is
drunk, CRcheq does not produce any R output. Let us use the obtained cost matrices Ca , Ra , Cd to compute
the cost of drunkenness F .

>> [F,CT,DCT,mopta,moptd]=CRcod(Ca,Ra,Cd);
>> disp([CT DCT F])

10.0000 4.4588 2.2428

The optimal capture time (for adversarial robber) is CT = 10, the expected capture time (for adversarial
robber) is DCT = 4.4588 and the cost of drunkenneess is F = CT

DCT = 2.2428.
Finally, we can simulate a game between one cop and a drunk robber. First we give values to the simulation

parameters.

>> x10=1;
>> x20=-1;
>> y0=5;
>> Tmax=100;
>> output=1;

The initial position of the first cop is x10=1. The initial position of the second cop is taken as x20=-1 to
indicate there is actually a single cop. The initial position of the robber is y0=5. We will use a maximum of
Tmax=100 steps in the simulation and output=1 means the program will actually print out the cop and robber
positions for every time step. Now we can run the CRSim command, which produces the following output.

>> [X1,X2,Y,Z,CT]=CRsim(x10,x20,y0,P,U1,U2,[],Tmax,output);

0 1 15 14
1 2 16 14
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2 3 15 12
3 4 16 12
....
14 15 17 2
15 16 18 2
16 17 17 0

The first column is time, the second is the cop’s position and the third the robber’s position; the final column
shows the cop-robber distance, when this becomes zero the robber is captured.

6 Experiments

6.1 Experiment Group 1: Paths

In this section we perform experiments on paths. We will use the notation Pn to denote the path of n nodes.
Let us first consider the case of one-cop vs. an adversarial and then a drunk robber. The optimal cop

strategy against the adversarial robber actually is quite obvious: in case n is odd, the cop should select the
middle node n+1

2 and, after the robber selects his initial node, the cop should go in the robber’s direction; in
case of even n, the cop has two optimal initial node choices: n

2 − 1, n
2 . For n ≥ 5 there are many optimal

robber strategies; they must all satisfy the following conditions: (a) initial robber position must have a distance
at least 2 from the cop and (b) the robber must try to keep a distance of at least 2 for as long as he can.
For one-cop and drunk robber, the optimal cop strategy remains the same; rather than following a particular
strategy, the robber simply random-walks on Pn. We perform the corresponding computations for various n
values, and present the results in the following table.

n ct(Pn) dct(Pn) F (Pn) Execution time Execution time
in sec (CAAR) in sec (CADR)

5 2.00 0.8000 2.5000 0.0168 0.0136
10 5.00 2.0000 2.5000 0.0183 0.0206
20 10.00 4.4588 2.2428 0.1496 0.1679
30 15.00 6.9522 2.1576 0.4265 0.6139
40 20.00 9.4517 2.1160 0.9936 1.5587
50 25.00 11.9526 2.0916 1.9511 3.4767
60 30.00 14.4540 2.0755 3.4224 6.5090

Table 2: Cost of drunkenness on path Pn with one cop.

We see that, as n (the number of nodes) increases, F tends to 2, the theoretically computed value (see
Theorem 2.2). Computation time is very small even for large values of n. Also note that CADR requires
longer time to complete than CAAR.

We perform similar computations for the case of two cops. From CAAR it turns out (quite reasonably)
that the optimal cop strategy is to place the cops at approximately n

4 and 3n
4 ; the robber’s optimal placement

is at (approximately) n
2 . The same cop placements remain optimal for the drunk robber. We present the

results, for various n values, in Table 3. The results are similar to the one cop case, but note that execution
time increases quite rapidly with n. For the case n = 60, CADR requires 844 sec, a little over 14 min. While
this is still manageable, it is rather on the long side.
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n ct(Pn) dct(Pn) F (Pn) Execution time Execution time
(CAAR) (CADR)

5 1.00 0.6000 1.6667 0.0271 0.0198
10 2.00 0.9000 2.2222 0.2523 0.2851
20 5.00 2.0500 2.4390 4.4772 6.3269
30 7.00 3.2708 2.1401 26.3938 38.6483
40 10.00 4.5044 2.2201 85.5995 135.9235
50 12.00 5.7459 2.0885 212.3132 388.6472
60 15.00 6.9928 2.1451 404.4863 844.8199

Table 3: Cost of drunkenness on path Pn with two cops.

6.2 Experiment Group 2: Cycles

In this section we perform experiments on the n nodes cycle Cn. Since in the cycle a single cop cannot capture
the adversarial robber, we will only consider the case of two cops hunting first an adversarial and then a drunk
robber. For both the adversarial and drunk robber and even n, an optimal cop strategy is to place the two
cops in any two diametrically opposite nodes; the optimal strategies for the case of odd n are similar. The
adversarial robber’s optimal strategies can be described as follows: (a) initial robber position must have a
distance at least 2 from the nearest cop and (b) the robber must try to keep a distance of at least 2 from the
nearest cop for as long as he can. The results for various n values appear in Table 4. We see that, as n (the
number of nodes) increases, F tends to 2, the theoretically computed value (see Theorem 2.3). In general,
the results of Table 4 are very similar to those of Table 3.

n ct(Pn) dct(Pn) F (Pn) Execution time Execution time
in sec (CAAR) in sec (CADR)

5 1.00 0.6000 1.6667 0.0224 0.0230
10 2.00 1.0000 2.0000 0.1667 0.2186
20 5.00 2.1000 2.3810 2.6292 3.9532
30 7.00 3.3333 2.1000 13.3594 21.8254
40 10.00 4.5500 2.1978 42.2385 74.3258
50 12.00 5.8000 2.0690 103.9459 206.5505
60 15.00 7.0333 2.1327 215.4420 458.9260

Table 4: Cost of drunkenness on cycle Cn with two cops.

6.3 Experiment Group 3: Trees

We examine regular trees Td,k (d is node degree and k tree depth). In Table 5 we list results for one cop and
various d and k values; total number of nodes is listed in the third column.

d k n ct(Td,k) dct(Td,k) F (Td,k) Execution time Execution time
in sec (CAAR) in sec (CADR)

2 2 7 2.0000 0.8571 2.3333 0.0185 0.0122
2 3 15 3.0000 1.6444 1.8243 0.0279 0.0165
2 4 31 4.0000 2.4014 1.6657 0.1388 0.0916
2 5 63 5.0000 3.3161 1.5078 0.7142 0.6402
3 2 13 2.0000 0.9231 2.1667 0.0144 0.0074
3 3 40 3.0000 1.8188 1.6495 0.1803 0.1218
3 4 121 4.0000 2.6513 1.5087 2.2611 2.9700
4 2 21 2.0000 0.9524 2.1000 0.0355 0.0195
4 3 85 3.0000 1.8918 1.5858 0.8421 0.8509
5 2 31 2.0000 0.9677 2.0667 0.0783 0.0450

Table 5: Cost of drunkenness on Td,k with one cop.
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In Table 6 we perform the same computations for two cops.

d k n ct(Td,k) dct(Td,k) F (Td,k) Execution time Execution time
in sec (CAAR) in sec (CADR)

2 2 7 1.0000 0.7143 1.4000 0.0593 0.0302
2 3 15 2.0000 0.8667 2.3077 0.6608 0.4188
2 4 31 3.0000 1.6237 1.8477 8.1467 6.0328
2 5 63 4.0000 2.3792 1.6812 94.8508 94.8802
3 2 13 2.0000 0.8462 2.3636 0.3011 0.1720
3 3 40 3.0000 1.5078 1.9896 13.9444 10.5496
3 4 121 4.0000 2.3688 1.6886 557.7370 864.7016
4 2 21 2.0000 0.9048 2.2105 1.3541 0.8400
4 3 85 3.0000 1.6541 1.8137 143.1214 153.4834
5 2 31 2.0000 0.9355 2.1379 4.5125 2.9715

Table 6: Cost of drunkenness on Td,k with two cops.

Comparing Tables 5 - 6 with Tables 2 - 4 we see that trees can be searched faster than paths and cycles of
the same size (i.e., the same number of nodes). We also note an interesting effect regarding ct(Td,k). For d = 2,
when going from one to two cops, ct(T2,k) decreases by one; e.g., ct(T2,2) is 2 for one cop and 1 for two cops.
However, for d > 2, we see no corresponding decrease; e.g., ct(T3,2) is 2 for both one and two cops. This may
at first seem paradoxical, but actually is easily explained. In the binary tree two cops can divide the graph
T2,k into two subtrees T2,k−1 and each cop searches a subtree separately; tis effectively reduces the depth of
the tree by one. However this reduction is not possible when d > 2; in this case the optimal cop placement is
(for both cops) at the root of the tree and only one cop is actively pursuing the robber. These considerations
do not apply to the drunk robber. Hence, for binary trees, the cost of drunkenness is actually smaller for two
cops than for one.

We also perform a few experiments involving non-regular trees, which we denote with T p
d,k. Here d, k are

as previously and p has the following meaning: every node can spawn up to a maximum of d nodes, but each
node will actually be generated w.p. p. We generate 40 such trees for each set of (d, k, p) values and apply
to each such tree CAAR and CADR; in Table 7 we list the average (over the 40 instances) of n, ct

(
T p

d,k

)
,

dct
(
T p

d,k

)
and F

(
T p

d,k

)
.

d k p aver. n No. of ct
(
T p

d,k

)
dct
(
T p

d,k

)
F
(
T p

d,k

)
Execution time Execution time

Cops in sec (CAAR) in sec (CADR)
3 6 0.50 33.05 1 4.45 2.3536 1.9345 0.3203 0.3285
4 6 0.35 23.50 1 4.10 2.0608 2.0297 0.1534 0.1233
3 7 0.50 51.92 1 5.15 2.8431 1.9282 1.0679 1.5013
3 6 0.50 33.05 2 3.60 1.6229 2.3397 43.2821 50.7222
4 6 0.35 23.50 2 3.30 1.3738 2.7420 11.7323 10.6124

Table 7: Cost of drunkenness on random tree T p
d,k.

6.4 Experiment Group 4: Grids

In this section we perform experiments on square grids. We denote the m × m grid by Γm. Note that
Γm = Pm�Pm, i.e., it is the product graph of Pm by itself. We only list experiments with two cops (since
a single cop cannot capture the adversarial robber on Γm). In [6] we show that, against the adversarial
robbers, the optimal initial cop placements are at the nodes with coordinates (approximately) either

(
m
2 ,

m
4

)
and

(
m
2 ,

3m
4

)
or
(

m
4 ,

m
2

)
and

(
3m
4 ,

m
2

)
.
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m n ct(Γm) dct(Γm) F (Γm) Execution time Execution time
in sec (CAAR) in sec (CADR)

3 9 2 0.8519 2.3478 0.1306 0.2198
4 16 3 1.1667 2.5714 1.1086 2.5146
5 25 4 1.5541 2.5739 5.9837 16.0363
6 36 5 1.9636 2.5463 23.3114 71.0747
7 49 6 2.3607 2.5416 72.5183 269.0830

Table 8: Cost of drunkenness on Γm with two cops.

6.5 Experiment Group 5: Lollipops

In this section we perform experiments on “lollipop” graphs. The (m, c) lollipop is denoted by Lm,c and is
a graph that is obtained from the complete graph Kbcmc connected to the path Pm (that is, one end of the
path belongs to the clique). For all values (m, c), it is easy to see that one cop can catch the robber (either
adversarial or drunk) on Lm,c. In [6] we have shown that, by appropriate selection of c, F (Lm,c) can take any
value in (1,∞).

In Table 9 we present several combinations of m and c; as usual, n denotes the total number of nodes.
Similarly, in Table 10 we present the same results for two cops.

m c n ct(Lm,c) dct(Lm,c) F (Lm,c) Execution time Execution time
in sec (CAAR) in sec (CADR)

5 1/2 8 3.00 1.4688 2.0426 0.0222 0.0194
5 1 10 3.00 1.5750 1.9048 0.0153 0.0213
5 2 15 3.00 1.4167 2.1176 0.0403 0.1126

10 1/2 15 6.00 2.9733 2.0179 0.0486 0.0724
10 1 20 6.00 2.8953 2.0723 0.1094 0.2951
10 2 30 6.00 2.2757 2.6366 0.4062 2.5187
20 1/2 30 11.00 5.9841 1.8382 0.4072 1.0404
20 1 40 11.00 5.4333 2.0246 1.1356 6.3614
20 2 60 11.00 3.9623 2.7762 5.0502 72.7441
30 1/2 45 16.00 8.9352 1.7907 1.5439 5.7239
30 1 60 16.00 7.9485 2.0130 4.8809 44.3143
30 2 90 16.00 5.6370 2.8384 23.2740 564.0467

Table 9: Cost of drunkenness with one cop on the lollipop Lm,c.
m c n ct(Lm,c) dct(Lm,c) F (Lm,c) Execution time Execution time

in sec (CAAR) in sec (CADR)
5 1/2 8 2.00 0.7500 2.6667 0.1279 0.1137
5 1 10 2.00 0.8000 2.5000 0.2511 0.4601
5 2 15 2.00 0.8667 2.3077 2.0906 10.11405

10 1/2 15 3.00 1.2333 2.4324 1.3910 2.6694
10 1 20 3.00 1.1750 2.5532 6.8654 31.7424
10 2 30 3.00 1.1167 2.6866 87.6725 1026.7434
20 1/2 30 5.00 2.3188 2.1563 35.7257 136.6107
20 1 40 5.00 1.9891 2.5137 267.5297 2791.5937
20 2 60 not completed not completed not completed not completed not completed
30 1/2 45 not completed not completed not completed not completed not completed
30 1 60 not completed not completed not completed not completed not completed
30 2 90 not completed not completed not completed not completed not completed

Table 10: Cost of drunkenness with two cops on the lollipop Lm,c.

We see that in two cops experiments execution time increases rather rapidly and in fact several experiments
did not run to completion (the actual behavior observed was that the Matlab program ran out of memory).
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These negative results are interesting and useful to get an idea of the limits of the CAAR and CADR algorithms
or, more precisely, of our implementations thereof. We hope a C implementation and more careful coding can
extend the size of the problems which can be dealt with; but of course the “curse of dimensionality” will sooner
or later catch up with us.

6.6 Experiment Group 6: Barbells

In this section we perform experiments on “barbell” graphs. The (m, c) barbell is denoted by Bm,c and is a
graph that is obtained from two complete graphs Kbcmc connected by a path Pm (that is, one end of the path
belongs to the first clique and the other end belongs to the second one). For all values (m, c), it is easy to
see that one cop can catch the robber (either adversarial or drunk) on Bm,c. In [6] we have shown that, by
appropriate selection of c, F (Bm,c) can take any value in (1, 2).

We present our results in Tables 11 (one cop) and 12 (two cops). Once again, there are cases for which the
experiments were not completed (this is also true of two cops on B20,c but we do not include these negative
results in Table 12).

m c n ct(Bm,c) dct(Bm,c) F (Bm,c) Execution time Execution time
in sec (CAAR) in sec (CADR)

5 1/2 11 4 2.1970 1.8207 0.0554 0.0357
5 1 15 4 2.7383 1.4607 0.0400 0.0778
5 2 25 4 3.2786 1.2200 0.1510 0.6131

10 1/2 20 7 4.1978 1.6675 0.1011 0.1911
10 1 30 7 5.0317 1.3912 0.3154 1.1854
10 2 50 7 5.6410 1.2409 1.4801 13.4713
20 1/2 40 12 8.1385 1.4745 0.8796 2.9956
20 1 60 12 9.2946 1.2911 3.3353 27.3446
20 2 100 12 10.1874 1.1779 17.6969 351.9576
30 1/2 60 17 11.9492 1.4227 3.5567 19.2307
30 1 90 17 13.4889 1.2603 14.6170 190.7509
30 2 150 17 14.7000 1.1565 81.2394 2630.6598

Table 11: Cost of drunkenness with two cops on the barbell Bm,c.
m c n ct(Bm,c) dct(Bm,c) F (Bm,c) Execution time Execution time

in sec (CAAR) in sec (CADR)
5 1/2 11 2 1.0000 2.0000 0.3613 0.5489
5 1 15 2 1.0000 2.0000 1.2929 3.6679
5 2 25 2 1.0000 2.0000 16.0763 116.0589

10 1/2 20 3 1.6500 1.8182 4.8205 11.9200
10 1 30 3 1.4667 2.0455 37.5107 245.9268
10 2 50 not completed not completed not completed not completed not completed

Table 12: Cost of drunkenness with two cops on the barbell Bm,c.

6.7 Experiment Group 7: Randomly generated graphs

In this section we apply CAAR and CADR to two families of random graphs.
In the first family, a graph is generated in the following manner. First a path of m nodes is generated.

Then we take every pair of non-adjacent nodes x, y and add an edge xy w.p. p. Note that the resulting graph
will always be connected. We generate twenty such graphs and apply CAAR and CADR to each one of them,
always using two cops. It is possible (though unlikely) that, on one of the generated graphs, the adversarial
robber cannot be captured by two cops; if this is the case we drop the particular graph and generate another
one, with the goal that the total number of searched graphs is twenty (actually there were very few such cases).
We list the obtained results in Table 13. The first three columns list the graph parameters (especially, n is the
total number of nodes), the remaining columns give the usual information.
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m p n ct(Bm,c) dct(Bm,c) F (Bm,c) Execution time Execution time
in sec (CAAR) in sec (CADR)

10 0.05 10 2.1000 0.8667 2.4279 0.2357 0.3528
10 0.10 10 2.0500 0.8371 2.4502 0.1877 0.3897
10 0.15 10 1.8500 0.8183 2.2598 0.1733 0.4467
10 0.20 10 1.9000 0.8108 2.3426 0.1803 0.5681
10 0.25 10 1.6500 0.8056 2.0459 0.1794 0.7090
20 0.05 20 3.8500 1.3113 2.9257 2.6174 6.4532
20 0.10 20 3.3500 1.1636 2.8774 2.6635 9.4859
20 0.15 20 2.7000 1.0890 2.4676 3.0130 15.0438
20 0.20 20 2.5000 1.0389 2.3962 3.0761 19.3343

Table 13: Cost of drunkenness on random graphs of the frst family.

In the second family, a graph is generated in the following manner. First a regular d-ary tree of depth k
is generated. Then, we take every pair of non-adjacent nodes x, y and add an edge xy w.p. p. Again, the
resulting graph will always be connected. We generate twenty such graphs and apply CAAR and CADR to
each one of them, always using two cops; once again we reject graphs on which the robber cannot be captured
and keep the total number of used grahs equal to twenty. We list the obtained results in Table 14.

d k p n ct(Bm,c) dct(Bm,c) F (Bm,c) Execution time Execution time
(CAAR) (CADR)

2 3 0.05 15 2.3500 0.9204 2.5407 0.8114 1.4018
2 3 0.10 15 2.3500 0.9450 2.4748 0.8268 2.1052
2 3 0.15 15 2.0500 0.9275 2.2095 0.8311 2.9978
2 3 0.20 15 2.0500 0.9459 2.1688 0.9049 4.2888
2 3 0.25 15 2.0000 0.9146 2.1887 0.9492 4.9867
3 3 0.05 40 6.9000 1.4670 4.6604 40.5833 106.3985
3 3 0.10 40 8.8824 1.4146 6.2497 65.3016 240.5962
3 3 0.15 40 8.6746 1.3227 6.5583 85.5467 389.56
3 3 0.20 40 8.5294 1.2601 6.7535 109.7863 627.8949

Table 14: Cost of drunkenness on random graphs of the second family.

6.8 Experiment Group 8: Execution Time

In the final group of experiments we want to explore the dependence of execution time on several factors.
First, we want to explore dependence on the size of the graph. We quantify “size” by n, the number of

nodes. This is a very rough description of size, because it is expected (and will be observed in the following
graphs) that CADR and CAAR can take very different times to complete on graphs with the same number
of nodes but different topology. So, for example, the number of edges or the number of cycles of a graph will
probably influence execution time decisively. At any rate, in this preliminary exploration we simply collect the
data of the previous sections and plot them in Figures 1 and 2. In all figures, the horizontal axis corresponds
to n, number of nodes, and the vertical axis to the logarithm of execution time (in sec) for CAAR (diamond)
and CADR (square). For the same n value we can have several different execution times, corresponding to
graphs of the same number of nodes but different topology. For the reader’s convenience we summarize the
quantities plotted in each figure in the following table.

Figure No. of Cops Iteration
1-left 1 Jacobi
1-right 1 Gauss-Seidel
2-left 2 Jacobi
2-right 2 Gauss-Seidel
Table 15. Summary of figures 1-4
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Figure 1: For one cop, we plot the natural logarithm of execution time vs. n, number of nodes of the graph.
Left panel: Jacobi iteration; right panel: Gauss-Seidel iteration. In both panels, diamonds denote execution
times for CAAR and squares for CADR.

Figure 2: For two cops, we plot the natural logarithm of execution time vs. n, number of nodes of the graph.
Left panel: Jacobi iteration; right panel: Gauss-Seidel iteration. In both panels, diamonds denote execution
times for CAAR and squares for CADR.

We see in Figures 1-2 the rapid increase of execution time as a function of n. We also see that graphs with
the same n can have very different execution times. For example, in Figure 1 we see that for n ' 60 execution
time for a lollipop can be more than 100 times that for a tree. This stands to reason, since in certain cases a
lollipop has a much higher number of edges (and cycles) than a tree with the same number of nodes.

We also see in Figures 1 and 2 that CADR generally requires considerably higher execution time than CAAR
and, especially, moving form one to two cops will increase the execution time considerably. (In addition to
execution time, another effect of increasing the number of cops is the increased memory requirement; this
effect does not show in the above figures but we have verified its existence by monitoring memory usage during
execution of the algorithms.)

On the other hand, figures 1 and 2 show that there is no appreciable difference in execution time between
the Jacobi and Gauss-Seidel versions of the algorithms.

The final factor that we want to explore is the influence of initial conditions on execution time. To this end
we run both CAAR and CADR on a number of graphs starting with different initializations Cx,y and Rx,y (for
x 6= y). The results are summarized in Figures 3-7. We have used the initializations Cx,y ∈ {0, 1, 10, 100, 1000}.
The graphs we have used are paths, cycles and trees; in each family we have used an increasing number of
nodes, resulting in increasing execution times. The way we present the results is as follows. Let Te (init) be
the execution time of an algorithm for a particular graph and with initialization Cx,y = init. In Figures 3-7
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the horizontal axis is execution time for the initialization Cx,y = 0, in other words Te (0). Four curves are
included in each graph, one curve corresponding to eac value init ∈ {1, 10, 100, 100}. Each such curve depicts
the ratio f (Te (0)) = Te(init)

Te(0) . In other words, a particular point in such a curve shows the factor by which
execution time changed (for a particular graph, requiring execution time Te (0) = τ) when the initialization
changed from Cx,y = 0 to Cx,y = init. In all cases (except for the case of CADR on trees, i.e., the right panels
of Figures 4 and 7) we see values close to 1; in other words: initialization values do not seem to play a critical
role in execution time.

Figure 3: One cop on paths: ratio of execution times for various initializations of C and R. Let Te(init) be the
execution time of CADR (resp. CAAR) when C (resp. C and R) is initialized at value init. The horizontal
axis is Te(0). The vertical axis is the ratio Te(init)/Te(0) for various init values. Left panel: CAAR; right
panel: CADR.

Figure 4: One cop on trees: ratio of execution times for various initializations of C and R. Let Te(init) be the
execution time of CADR (resp. CAAR) when C (resp. C and R) is initialized at value init. The horizontal
axis is Te(0). The vertical axis is the ratio Te(init)/Te(0) for various init values. Left panel: CAAR; right
panel: CADR.
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Figure 5: Two cops on paths: ratio of execution times for various initializations of C and R. Let Te(init) be
the execution time of CADR (resp. CAAR) when C (resp. C and R) is initialized at value init. The horizontal
axis is Te(0). The vertical axis is the ratio Te(init)/Te(0) for various init values. Left panel: CAAR; right
panel: CADR.

Figure 6: Two cops on cycles: ratio of execution times for various initializations of C and R. Let Te(init) be
the execution time of CADR (resp. CAAR) when C (resp. C and R) is initialized at value init. The horizontal
axis is Te(0). The vertical axis is the ratio Te(init)/Te(0) for various init values. Left panel: CAAR; right
panel: CADR.

Figure 7: Two cops on trees: ratio of execution times for various initializations of C and R. Let Te(init) be the
execution time of CADR (resp. CAAR) when C (resp. C and R) is initialized at value init. The horizontal
axis is Te(0). The vertical axis is the ratio Te(init)/Te(0) for various init values. Left panel: CAAR; right
panel: CADR.
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7 Conclusion

We have studied the cops and robber game from the computational point of view. Our main goal is to compute
the cost of drunkenness; to this end, however, we have used algorithms which have more general applicability,
in computing optimal strategies for both the cops (playing against a drunk or adversarial robber) as well as
for the adversarial robber. These algorithms offer an alternative, computational approach to the theoretical
determination of the cost of the drunkenness (which can be achieved in relatively few, special cases).

While both the CAAR and CADR algorithms have been previously available in the literature, apparently
their similarity has not been previously noticed. While implementations of the value iteration algorithm are
available in the public domain, we believe CADR (our implementation of value iteration specifically for the
cops and drunk robber problem) is the first one publicly available; we believe the same is true of CAAR (our
implementation of Hahn and MacGillivray’s algorithm for the cops and adversarial robber problem).

Our implementation can be significantly improved. A version which can handle an arbitrary number of
cops is desirable; such an implementation must be written in faster language than Matlab (C, C++ and Java
are prime candidates) and careful coding optimization should be applied to turn a final application capable
of handling truuly large graphs and more than two cops. Ultimately however, the exact algorithms presented
in this report will be defeated by the curse of dimensionality. To handle large numbers of cops (and robbers)
approximate algorithms must be developed. These algorithms will be suboptimal and will likely make use of
heuristics; hence a careful theoretical analysis will be necessary to establish performance guarantees3. These
tasks we intend to undertake in the future.

An additional case of interest is when the cops chase an invisible robber. This problem is very important
for applications but also computationally much harder than the one we have examined in the current report.
In a future publication we hope to present algorithms which will handle this case.
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3Let us give just one example of such an algorithm, for the case of drunk robber. We use the following simple heuristic: the
cop always randomly chooses a vertex among those which are closer to the robber. If the max degree of G is d, then w.p. at least
1
d

the cop-robber distance decreases and w.p. no greater than d−1
d

it remains the same. Hence the expected cop-robber distance
decreases monotonically and, if c (G) = 1, we can expect it to go to zero (this has been mentioned by P. Winkler) . However, this
heuristic will not necessarily work for k cops when k = c (G) > 1. Furthermore, even for c (G) = 1, this heuristic does not provide
a method for optimal initialization of cop position. But perhaps a theoretical analysis would provide refinements of the heuristic
which would answer these questions. .
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