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Abstract. The cops and robber game has been extensively studied under the assumption of
optimal play by both the cops and the robbers. In this paper we study the problem in which
cops are chasing a drunk robber (that is, a robber who performs a random walk) on a graph.
Our main goal is to characterize the “cost of drunkenness.” Specifically, we study the ratio of
expected capture times for the optimal version and the drunk robber one. We also examine the
algorithmic side of the problem; that is, how to compute near-optimal search schedules for the
cops. Finally, we present a preliminary investigation of the invisible robber game and point out
differences between this game and graph search.

1. Introduction

The game of Cops and Robber, introduced independently by Nowakowski and Winkler [20]
and Quilliot [26] almost thirty years ago, is played on a fixed undirected, simple, and finite graph
G. There are two players, a team of k cops, where k ≥ 1 is a fixed integer, and the robber. In
the first round of the game, the cops occupy any set of k vertices and then the robber chooses
a vertex to start from; in the following rounds, first the cops and then the robber move from
vertex to vertex, following the edges of G. More than one cop is allowed to occupy a vertex,
and the players may remain on their current positions. At every step of the game, both players
know the positions of all cops and the robber. The cops win if they capture the robber; that is,
if at least one of cop eventually occupies the same vertex as the robber; the robber wins if he
can avoid being captured indefinitely. The players are adversarial ; that is, they play optimally
against each other. Since placing a cop on each vertex guarantees that the cops win, we may
define the cop number, written c(G), to be the minimum number of cops needed to win on G.
The cop number was introduced by Aigner and Fromme in [1].

In this paper we study a new version of the game, in which the robber is drunk ; that is, he
performs a random walk on G. (In this paper, we consider the “standard” random walk: at every
time step the robber will move equiprobably to a neighboring vertex. Another natural approach
would be to examine the “lazy” random walk, in which the robber may also stay in place. Our
results can be easily modified to the new setting.) The cops are assumed to follow a strategy
which is optimal with respect to the robber’s random behavior. This version was proposed by D.
Thilikos during the 4th Workshop on GRAph Searching, Theory and Applications (GRASTA
2011, held in Schloss Dagstuhl) and he specifically asked the following question: “what is the
cost of drunkenness?” In other words, how much faster than the adversarial robber is the drunk
one captured? We try to answer various versions of this question. In addition, we study some
algorithmic questions; for example, how to compute the expected capture time for an optimal
strategy of cops.

There is a large bibliography on pursuit games on graphs. The most important open problem
in this area is Meyniel’s conjecture (communicated by Frankl [10]). It states that c(n) = O(

√
n),

where c(n) is the maximum of c(G) over all n-vertex connected graphs. Recent years have
witnessed significant interest in study of random graphs from that perspective [4, 6, 17, 22]
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confirming that, in fact, Meyniel’s conjecture holds asymptotically almost surely for binomial
random graphs [24] as well as random d-regular graphs [23]. The reader interested in cops
and robbers can start by perusing the surveys [2, 9, 11] and the recent book [5]. To the best
of our knowledge, the problem of a drunk robber has not been previously studied in the cops
and robbers literature. However there is a strong connection to the Markov Decision Processes
(MDP) literature; we will comment on this connection (and use it) in Section 5. The reader can
refer to [15, 25, 27] for MDP surveys.

While the emphasis of the current paper is on cops chasing the visible robber, we also touch
briefly the case of invisible robber, both adversarial and drunk. Not much has been written
on this problem, but a related problem which has been extensively studied is the Graph Search
problem, where a team of searchers try to locate in a graph an invisible fugitive, who is also
assumed to be arbitrarily fast and omniscient (he always knows the searchers’ locations as well
as their strategy). A recent comprehensive review of graph search appears in [9]. We emphasize
that the graph search problem is similar but not identical to cops chasing an invisible robber.

The paper is structured as follows. In Section 2 we present definitions and our notation; the
formulation is, naturally, probabilistic. In particular, we define the cost of drunkenness to be
the ratio of the capture time for the adversarial robber and the expected capture time for the
drunk robber. We also present a number of lemmas which we will repeatedly use in the following
sections. In Section 3 we obtain bounds on the cost of drunkenness for various special families
of graphs; for example, paths, cycles, grids, and complete d-ary trees. In Section 4 we look
at the problem more generally and show that, for any c ∈ [1,∞), there is a graph for which
the cost of drunkenness is arbitrarily close to c. In Section 5 we connect the cops and drunk
robber problem to Markov Decision Processes (MDP); that is, Markov chains with a control
input which can modify the transition probabilities. MDP’s provide a natural language for the
problem; in particular they are useful in the computation of optimal cop strategies; that is,
strategies which minimize the expected robber capture time. We then use the MDP machinery
to present algorithms which compute the optimal cop strategy for a given graph and a drunk
robber. In Section 6 we give a brief, preliminary discussion of the cost of drunkenness for an
invisible robber. Finally, in Section 7 we list possible future research directions.

2. Preliminaries

2.1. Definitions. Let G = (V,E) be a fixed undirected, simple, and finite graph. Since
the game played on a disconnected graph can be analyzed by investigating each component
separately, we assume that G is connected. We will use the following notation and assumptions.

(i) Recall that the cop number c(G) is the minimum number of cops needed to win on G.
(ii) There are k cops (for the time being we assume k ≥ c(G) but this assumption will be

relaxed in later sections).
(iii) X i

t denotes the position of the i-th cop at time t (i ∈ {1, 2, . . . , k}, t ∈ {0, 1, 2, . . .});
Xt = (X1

t , . . . , X
k
t ) denotes the vector of all cop positions at time t; X = (X0, X1, X2, . . .)

denotes the positions of all cops during the game (X may have finite or infinite length).
(iv) Yt denotes the position of the robber at time t and Y = (Y0, Y1, Y2, . . .) the positions of

the robber during the game. (Let us note that there is a correlation between X and Y;
that is, players adjust their strategies observing moves of the opponent.)

(v) The moving sequence is as follows: first the cops choose initial positions X0 ∈ V , then
the robber chooses Y0 ∈ V . For t ∈ {1, 2, . . .} first the cops choose Xt and then the
robber chooses Yt. Players use edges of the graph G to move from one vertex to another.
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In other words, for i ∈ {1, 2, . . . , k} and t ∈ {0, 1, 2, . . .}, either {X i
t , X

i
t+1} ∈ E or

X i
t = X i

t+1. Similarly, for t ∈ {0, 1, 2, . . .}, either {Yt, Yt+1} ∈ E or Yt = Yt+1 (in the
drunk robber case we do not have Yt = Yt+1, see below).

(vi) Given a play X, Y , the capture time is denoted by T and defined as follows

T = min{t : ∃i such that X i
t = Yt};

that is, it is the first time a cop is located at the same vertex as the robber. In general,
X i
t = Yt can happen either after the cops move or, if the robber does not play optimally,

after the robber moves; in the former case we have X i
t = Yt−1 and (assuming the robber

cannot move any longer) also Yt−1 = Yt; hence the definition of T is correct. Finally,
note that T <∞, since k ≥ c(G) and c(G) cops can capture the adversarial robber (and
so, of course, the drunk one too).

Assuming for the moment adversarial cops and robber, and given initial cop positions x ∈ V k

and robber position y ∈ V , we let ctx,y(G, k) = T . The k-capture time is defined as follows:

ct(G, k) = min
x∈V k

max
y∈V

ctx,y(G, k).

In other words, we allow our perfect players to choose their initial positions in order to achieve
the best outcome. Finally, when k = c(G) we simply write ct(G) instead of ct(G, c(G)), and call
it the capture time instead of c(G)-capture time. Let us stress one more time that the above
quantities are defined under the assumption of optimal play by both players.

Next let us assume that the cops are adversarial but that the robber is drunk. More specifically,
we assume that the robber performs a random walk on G. Given that he is at vertex v ∈ V
at time t, he moves to u ∈ N(v) at time (t + 1) with probability equal to 1/|N(v)|. Note that
we do not include v in N(v); that is, we consider open, not closed, neighbourhoods. Moreover,
the robber probability distribution does not depend on current position of cops; in particular,
it can happen that the robber moves to a vertex occupied by a cop (something the adversarial
robber would never do).

Under the above assumptions, the drunk robber game is actually a one-player game and, for
given initial configuration and cops strategy, the capture time T is a random variable. For any
x ∈ V k and y ∈ V , let

dctx,y (G, k) = E (T | X0 = x, Y0 = y, k cops are used optimally) ;

in other words, it is the expected capture time given initial cops and robber configurations x, y
and assuming optimal play by the k cops.

Since the robber is drunk, we cannot expect him to choose the most suitable vertex to start
with—instead, he chooses an initial vertex uniformly at random. Cops are, of course, aware of
this and so they try to choose an initial configuration so that the expected length of the game
is as small as possible. Hence, we define the expected k-capture time as follows:

dct (G, k) = min
x∈V k

∑
y∈V

dctx,y (G, k)

|V |
.

As before, we let dct(G) = dct(G, c(G)). We define the cost of drunkenness as follows

F (G) =
ct(G)

dct(G)

and we obviously have F (G) ≥ 1.
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While we concentrate on the case k = c(G), it is also natural to consider expected capture
time dct(G, k) for k 6= c(G). The next theorem shows that this is well defined for any k ≥ 1 (in
particular, even for k < c(G)).

Theorem 2.1. dct(G, k) <∞ for any connected graph G and k ≥ 1.

Proof. Let G = (V,E) be any connected graph, D = D(G) be the diameter of G, and ∆ = ∆(G)
be the maximum degree of G. Fix any vertex v ∈ V , place k cops on v, and let X i

t = v for
all i and t (that is, cops never move; this is clearly a suboptimal strategy). For a given vertex
y ∈ V occupied by the drunk robber, the probability that he uses a shortest path from y to v
to move straight to v is at least (1/∆)D. This implies that, regardless of the current position of
the robber at time t, the probability that he will be caught after at most D further rounds is at
least ε = (1/∆)D. Moreover, corresponding events for times t + iD, i ∈ N ∪ {0} are mutually
independent. Thus, we get immediately that

ET =
∑
t≥0

P(T > t) ≤
∑
t≥0

P
(
T >

⌊
t

D

⌋
D

)
=
∑
i≥0

D · P(T > iD) ≤ D
∑
i≥0

(1− ε)i =
D

ε
= D∆D < ∞,

and we are done. �

Let us remark that sharper bounds can be obtained for the capture time of a drunk robber,
even in the case that the cops are also drunk; for example see [7]. However, Theorem 2.1 will
be sufficient for our needs.

2.2. Some Useful Lemmas. We will be using the following version of a well-known Chernoff
bound many times so let us state it explicitly.

Lemma 2.2 ([14]). Let X be a random variable that can be expressed as a sum X =
∑n

i=1Xi of
independent random indicator variables where Xi ∈ Be(pi) with (possibly) different pi = P(Xi =
1) = EXi. Then the following holds for t ≥ 0:

P(X ≥ EX + t) ≤ exp

(
− t2

2(EX + t/3)

)
,

P(X ≤ EX − t) ≤ exp

(
− t2

2EX

)
.

In particular, if ε ≤ 3/2, then

P(|X − EX| ≥ εEX) ≤ 2 exp

(
−ε

2EX
3

)
.

Let us now consider the following (simple) random walk on Z. Understanding the behaviour
of this Markov chain will be important in investigating simple families of graphs later. Let
X0 = 0, and for a given t ≥ 0, let

Xt+1 =

{
Xt + 1 with probability 1/2

Xt − 1 otherwise.

It is known that with high probability, random variable Xt stays relatively close to zero. We
make this precise below using the Chernoff bound.
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Lemma 2.3. Let n ∈ N and c ∈ (2,∞). For a simple random walk (Xt) on Z with X0 = 0 we

have that |Xt| ≤ c
√
n log n for every t ∈ {0, 1, . . . , n} with probability at least 1− 2n1−c2/4.

Proof. Fix n ∈ N and c ∈ (2,∞). Let us perform n steps of a simple random walk on Z starting
with X0 = 0. Let Yt (1 ≤ t ≤ n) denote the number of times the process goes ‘up’ until time t.
It is clear that EYt = t/2 and

Xt = Yt − (t− Yt) = 2(Yt − t/2).

For a given t, it follows from Chernoff bound (Lemma 2.2) that

P
(
Xt < −c

√
n log n

)
= P

(
Yt ≤

t

2
− c

2

√
n log n

)
≤ exp

(
−(c
√
n log n/2)2

2(t/2)

)
≤ exp

(
−c

2

4
log n

)
= n−c

2/4.

A symmetric argument can be used to get that Xt > c
√
n log n with probability at most n−c

2/4.
Finally, from a union bound we get that the probability that there exists t (1 ≤ t ≤ n) with

|Xt| > c
√
n log n is at most n · 2n−c2/4 = 2n1−c2/4. �

3. Bounds on the Cost of Drunkenness

In this section we place upper and lower bounds on the cost of drunkenness F (G) when k
cops are available. We emphasize the case k = c(G) but also consider values of k 6= c(G). We
start with simple graphs (namely: paths, cycles, trees, and grids) in order to prepare for slightly
more complicated families in the next section.

3.1. Paths and a Suboptimal Strategy. In this subsection we play the game on Pn, a path
on n vertices (V (Pn) = {0, 1, . . . , n − 1}, E(Pn) = {{i − 1, i} : i ∈ {1, 2, . . . , n − 1}}). Clearly,
c(Pn) = 1; that is, one cop can catch the adversarial robber. Since the drunk robber is easier to
catch than the adversarial one, let us study the drunk robber playing against a single cop.

In this subsection we will compute the expected capture time using a suboptimal strategy,
namely starting the cop at X0 = 0 and moving him to the other end until he reaches n− 1 (or
until capture takes place). It is clear that this strategy achieves capture; furthermore (as will
become apparent in the following sections) many optimal strategies can be analyzed using this
suboptimal one.

Let Zt = Yt − Xt be the distance between players at time t. If the drunk robber starts at
vertex k ∈ {0, 1, . . . , n − 1}, we have Z0 = Y0 = k. (In order to simplify the argument, we
allow players to “pass each other” which is never the case in the real game; that is, Zt can be
negative.) We can redefine the capture time as

Tn = Tn(k) = min{t : Zt ≤ 0}.

Now, it is not so difficult to see the behaviour of the sequence (Zt)t≥0. Note that at time t, the
maximum distance between players is n− 1− t which implies that the robber will be caught in
at most n−1 steps. We have the following Markov chain to investigate: for t ∈ {0, 1, . . . , n−2},
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if Zt < n− 1− t, then

Zt+1 =

{
Zt − 2 with probability 1/2 (the robber goes toward the cop)

Zt with probability 1/2 (the robber goes away from the cop).

If Zt = n − 1 − t (that is, the robber occupies the end of the path), then Zt+1 = Zt − 2
(deterministically).

Consider another Markov chain Z ′t, which has the following simple behaviour: Z ′0 = k and
for every t ≥ 0, Z ′t+1 = Z ′t − 2 with probability 1/2; otherwise Z ′t+1 = Z ′t. Define T ′ = min{t :
Zt ≤ 0}. In other words, we will be chasing the robber on the infinite ray R (V (R) = N ∪ {0},
E(R) = {{i − 1, i} : i ∈ N}), which is slightly more difficult for the cop. Hence, it is easy
to prove that E(Tn | Z0 = k) ≤ E(T ′ | Z ′0 = k). Moreover, it is also easy (using a recursive
argument) to show that E(T ′ | Z ′0 = k) = k, and so E(Tn(k)) ≤ k. Now we are ready to show
the following.

Theorem 3.1. Consider that the cop starts on one end of the path Pn and moves toward the
other end. Let Tn be the capture time, provided that the robber is drunk. Then,

n

2

(
1−O

(
log n

n

))
≤ ETn ≤

n− 1

2
.

Before we move to the proof of this theorem let us mention that, in fact, with a slightly more
sophisticated argument, it is possible to show that ETn = n/2−O(1).

Proof. Let n ∈ N and fix any c > 2. The robber starts his walk on a vertex k ∈ {0, 1, . . . , n−1}.
Let us note that he is captured after at most n− 1 steps of the process (deterministically); that
is, Tn(k) ≤ n − 1. As we already mentioned ETn(k) ≤ k. Since the starting vertex for the
robber is chosen uniformly at random, we get that ETn ≤

∑n−1
k=0 k/n = (n− 1)/2, so it remains

to investigate a lower bound.
Suppose first that k ≤ (n−1)− c

√
n log n. It follows from Lemma 2.3 that the robber reaches

the other end of the path with probability at most 2n1−c2/4. If this is the case, we apply a trivial
lower bound for Tn(k), namely, Tn(k) ≥ 0; otherwise we get that the (conditional) expectation for

Tn(k) is equal to k. Hence, ETn(k) ≥ k(1−2n1−c2/4). Suppose now that k > (n−1)−c
√
n log n.

Using Lemma 2.3 one more time, we get that with probability at least 1− 2n1−c2/4 the robber
is not caught before time k − c

√
n log n.

Since the starting vertex for the robber is chosen uniformly at random, we get that

ETn ≥
1

n

n−1∑
k=0

ETn(k)

≥ 1

n

n−1−c
√
n logn∑

k=0

k +
n−1∑

k=n−c
√
n logn

(k − c
√
n log n)

 (1− 2n1−c2/4)

≥
(
n− 1

2
− c2 log n

)
(1− 2n1−c2/4).

For a given n, the parameter c can be adjusted for the best outcome. To get an asymptotic
behaviour, we can use, say, c = 3 to get that

ETn ≥
n

2

(
1−O

(
log n

n

))
,
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and the proof is complete. �

The proof of the theorem actually gives us more. We get that with probability tending to 1 as
n→∞, for all starting points for the robber (k ∈ {0, 1, . . . , n−1}), the cop needs k+O(

√
n log n)

moves to catch the robber.

3.2. Paths. We continue studying a visible robber on Pn but we now apply the optimal
capture strategy (it is optimal for both adversarial and drunk robber). If n is odd, we start by
placing a cop on vertex (n− 1)/2; if n is even we have two optimal strategies, the cop can start
on n/2 or n/2− 1. In any case, after selecting an initial vertex the strategy is the same: the cop
keeps moving toward the robber. Except for initial placement, this is the strategy examined in
the previous subsection and we have ct(Pn) = bn/2c. We easily get the following result.

Theorem 3.2.
n

4

(
1−O

(
log n

n

))
≤ dct (Pn) ≤ n

4
.

In particular, dct(Pn) = (1 + o(1))n/4 and the cost of drunkenness is

F (Pn) =
ct(Pn)

dct(Pn)
= 2 + o(1).

Proof. As we already mentioned, after the robber selects his initial vertex to start from, the
game is played essentially on a path of length at most bn/2c + 1. From Theorem 3.1, we get
immediately that

dct(Pn) ≤ ETbn/2c+1 ≤ n/4.

For a lower bound, we notice that the length of each subpath is at least bn/2c. By Theorem 3.1,

dct(Pn) ≥ ETbn/2c ≥
n

4

(
1−O

(
log n

n

))
,

and the proof is complete. �

In the general case when k ∈ N cops are available, we need to ‘slice’ a path into k shorter
paths and place a cop on their centers. We get that dct(Pn, k) = (1 + o(1))n/(4k).

3.3. Cycles. Let us play the game on a cycle Cn for n ≥ 4 (V (Cn) = {1, 2, . . . , n}, E(Cn) =
{{i, i + 1} : i ∈ {1, 2, . . . , n − 1}} ∪ {{1, n}}). It is not difficult to see that c(Cn) = 2; we use
two cops to chase the robber. They start by occupying two vertices at the distance b(n+ 1)/2c,
the maximum possible distance on the cycle. When the robber selects his vertex to start with,
they move toward him and capture occurs at time ct(Cn) = b(n + 1)/4c. The same strategy is
used when the robber is drunk.

As for paths, one can introduce a random variable Zt to measure the distance between the
robber and cops at time t. The problem (almost) reduces to the problem on a path. We mention
briefly the difference below but the formal proof is omitted. If n is odd, then Zt has exactly the
same behaviour as before. However, Z0 = b(n + 1)/2c with probability two times smaller than
any other legal starting value (note that a uniform distribution on V (Cn) is used but there is
just one vertex at the distance b(n+ 1)/2c). If n is even, then we get a uniform distribution for
starting values but the transition from Zt to Zt+1 is slightly different, namely, there is a chance
for Zt to stay at the same value, provided that the robber occupies the vertex which is at the
maximum distance from cops. In any case, it is straightforward to show that both upper and
lower bounds still hold so we get the following.
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Theorem 3.3.
n

8

(
1−O

(
log n

n

))
≤ dct(Cn) ≤ n+ 1

8
.

In particular, dct(Cn) = (1 + o(1))n/8 and the cost of drunkenness is

F (Cn) =
ct(Cn)

dct(Cn)
= 2 + o(1).

In the general case when k ∈ N cops are available, we spread them as evenly as possible. We
get that dct(Cn, k) = (1 + o(1))n/(4k).

3.4. Trees. All families of graphs we discussed so far have a very nice property, namely, it is
clear what the optimal strategy for the cops is. Once players fix their initial positions (that is,
X0 and Y0), cops must move toward the robber in order to decrease the expected capture time.
As we mentioned before, it is natural to measure the distance Zt between players at time t; Zt
decreases by 2 if the robber makes a bad move or is occupying a leaf; otherwise the distance
remains the same. This applies to the family of trees as well (note that c(T ) = 1 for any tree
T ). However, this time it is not clear which vertex should be used for the cop to start with in
order to optimize the expected capture time. For this family, the random variable Zt decreases
with probability 1/ deg(v), provided that the robber occupies vertex v, and the behaviour of the
sequence (Zt)t≥0 highly depends not only on the degree distribution but on the structure of a
tree as well. It is non-trivial to estimate the cost of drunkenness for a particular tree without
performing extensive calculations for every vertex as a starting point (these calculations can be
performed by computer, using the algorithms of Section 5.2). However, some sub-families of
trees are still relatively easy to deal with.

Let us consider d regular, rooted tree T (d, k) of depth k, with d ≥ 2 (in case d = 1, T (d, k) is
a path and F (T (d, k)) is given by Theorem 3.2). The root vertex on the level 0 has d neighbours
(children), vertices on levels 1 to k − 1 have degree d + 1 (one parent and d children), leaves
on the level k have degree 1 (just one parent). There are di vertices on level i for a total of
(dk+1 − 1)/(d − 1) vertices. Due to the symmetry, the cop must start the game on the root.
Since the drunk robber prefers to move toward leaves, it is natural to expect that his behaviour
is similar to the one of the adversarial robber. Moreover, almost all vertices are located on
levels k−o(k) so the robber almost always starts on these vertices which is clearly a good move.
We show that the cost of drunkenness is the best possible; that is, dct(T (d, k)) is tending to
ct(T (d, k)) = k as k →∞.

Theorem 3.4. For T (d, k) with d ≥ 2 we have

k −O(
√
k log k) ≤ dct(T (d, k)) ≤ k.

In particular, dct(T (d, k)) = (1 + o(1))k and the cost of drunkenness is

F (T (d, k)) =
ct(T (d, k))

dct(T (d, k))
= 1 + o(1).

Proof. Suppose that the drunk robber starts on level i ≥ k−
√
k log k. It follows from Lemma 2.2

that with probability 1−O(k−1) he will be caught on level k −O(
√
k log k). (In fact, it is also

true for i ≥ k/d, since the robber moves toward leaves with higher rate, namely, with probability
(d− 1)/d. However, an error following from this part is negligible compared to the other error,
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so we stay with this obvious bound for i.) Therefore,

dct(T (d, k)) ≥
k∑

i=k−
√
k log k

di

(dk+1 − 1)/(d− 1)
(k −O(

√
k log k))(1−O(k−1))

= (1−O(d−
√
k log k))(k −O(

√
k log k))(1−O(k−1))

= k −O(
√
k log k),

which finishes the proof. �

3.5. Grids. The Cartesian product of two graphs G and H is a graph with vertex set V (G)×
V (H) and with the vertices (u1, v1) and (u2, v2) adjacent if either u1 = u2 and v1, v2 are adjacent
in H, or v1 = v2 and u1, u2 are adjacent in G. We denote the Cartesian product of G and H by
G�H. In this subsection, we will study a square grid Pn�Pn.

It is known that for any two trees T1, T2, each of which has at least two vertices, we have
c(T1�T2) = 2 [19]. The capture time of the Cartesian product of trees was recently studied
in [18]. It was shown that for any two trees T1, T2 we have

ct(T1�T2) =

⌊
D(T1�T2)

2

⌋
=

⌊
D(T1) +D(T2)

2

⌋
,

where D = D(G) is the diameter of G. In particular, for a square grid we have that ct(Pn�Pn) =
n− 1.

We will show that the cost of drunkenness for a grid is asymptotic to 8/3.

Theorem 3.5.

dct(Pn�Pn) = (1 + o(1))
3

8
n,

and the cost of drunkenness is F (Pn�Pn) = 8/3 + o(1).

Proof. Suppose that the drunk robber occupies an internal vertex (u, v). The decision where to
go from there can be made in the following way: toss a coin to decide whether modify the first
coordinate (u) or the second one (v); independently, another coin is tossed to decide whether we
increase or decrease the value. Hence the robber will move with probability 1/4 to one of the four
neighbors of (u, v). Note that, if we restrict ourselves to look at one dimension only (for example,
let us call it North/South direction) we see the robber going North with probability 1/4, going
South with the same probability and staying in place with probability 1/2. In other words the
robber performs a lazy random walk on the path. Hence, both coordinates behave similarly to
the lazy random walk on integers (move with probability 1/2; do nothing, otherwise). The same
argument as in the previous proofs can be used to show that with probability, say, 1− o(n−1),
the robber stays within the distance O(

√
n log n) = o(n) from the initial vertex. Hence, if we

look at the grid from the ‘large distance’ the drunk robber is not moving at all.
Therefore, since we would like to investigate an asymptotic behaviour, the problem reduces

to finding a set S consisting of two vertices such that the average distance to S is as small
as possible. Cops should start on S to achieve the best outcome. It is clear that, due to the
symmetry of Pn�Pn, there are two symmetric optimal configurations for set S:

S = {(n/2 +O(1), n/4 +O(1)), (n/2 +O(1), 3n/4 +O(1))},
S = {(n/4 +O(1), n/2 +O(1)), (3n/4 +O(1), n/2 +O(1))}.
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In any case, the average distance is

n−1∑
u=0

n−1∑
v=0

dist((u, v), S) = (1 + o(1))8n

∫ 1/2

x=0

∫ 1/4

y=0

(x+ y)dydx = (1 + o(1))
3

8
n.

The result follows. �

4. The cost of drunkenness

In this section we show that the cost of drunkenness can be arbitrarily close to any real number
c ∈ [1,∞). In order to do it, we introduce two families of graphs, barbells and lollipops.

4.1. Barbell. Let n ∈ N and c ≥ 0. The barbell B(n, c) is a graph that is obtained from
two complete graphs Kbcnc connected by a path Pn (that is, one end of the path belongs to
the first clique whereas the other end belongs to the second one). The number of vertices of
B(n, c) is (1 + 2c)n + O(1), and c(B(n, c)) = 1. In order to catch (either the adversarial or
the drunk) robber, the cop should start at the center of the path and move toward the robber;
ct(B(n, c)) = n/2 +O(1). This family can be used to get any ratio from (1, 2].

Theorem 4.1. Let c ≥ 0. Then,

dct(B(n, c)) = (1 + o(1))
n

2
· 1 + 4c

2 + 4c
,

and the cost of drunkenness is

F (B(n, c)) =
ct(B(n, c))

dct(B(n, c))
= 1 +

1

1 + 4c
+ o(1).

Proof. The drunk robber starts on a clique with probability (2c)/(1 + 2c) + o(1). If this is
the case, the capture occurs at time n/2 + O(

√
n log n) with probability, say, 1 − o(n−1) by

Lemma 2.3. If the robber chooses a vertex at the distance k from the robber to start with, he
is captured after k +O(

√
n log n) steps, again with probability 1− o(n−1). Hence the expected

capture time is

(1 + o(1))

(
2c

1 + 2c
· n

2
+

1

1 + 2c
· n

4

)
= (1 + o(1))

n

2
· 1 + 4c

2 + 4c
.

The theorem holds. �

4.2. Lollipop. Let n ∈ N and c ≥ 0. The lollipop L(n, c) is a graph that is obtained from
a complete graph Kbcnc connected to a path Pn (that is, one end of the path belongs to the
clique). The number of vertices of L(n, c) is (1 + c)n + O(1), and the cop number c(L(n, c)) is
1. In order to catch the perfect robber, the cop should start at the center of the path and move
toward the robber; ct(L(n, c)) = n/2 +O(1). However, it is not clear what the optimal strategy
for the drunk robber is. The larger the clique is, the closer to the clique the cop should start
the game.

Theorem 4.2. Let c ≥ 0. Then,

dct(L(n, c)) =

{
(1 + o(1))n

4
· (
√
2−1+c)(

√
2+1−c)

1+c
, for c ∈ [0, 1]

(1 + o(1)) n
2(1+c)

, for c > 1.
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and the cost of drunkenness is

F (L(n, c)) =
ct(L(n, c))

dct(L(n, c))
=

{
2(1+c)

(
√
2−1+c)(

√
2+1−c) + o(1), for c ∈ [0, 1]

(1 + c) + o(1), for c > 1.

Before we move to the proof of this result, let us mention that the cost of drunkenness (as
a function of the parameter c) has an interesting behaviour. For c = 0 it is 2 (we play on the
path), but then it is decreasing to hit its minimum of 1 +

√
2/2 for c =

√
2− 1. After that it is

increasing back to 2 for c = 1, and goes to infinity together with c. Therefore, this family can
be used to get any ratio at least 1 +

√
2/2 ≈ 1.71.

Proof. Let the cop start on vertex v at the distance (1 + o(1))bn from the clique (b ∈ [0, 1]
will be chosen to obtain the minimum expected capture time). The drunk robber starts on a
vertex of a clique with probability c/(1 + c) + o(1). If this is the case, the capture occurs at
time bn+O(

√
n log n) with probability, say, 1− o(n−1) by Lemma 2.3. If the robber chooses a

vertex at the distance k from the cop, then he is captured, again with probability 1 − o(n−1),
after k+O(

√
n log n) rounds. The robber starts between the cop and the clique with probability

b/(1 + c) + o(1) and on the other side with remaining probability. Hence the expected capture
time is equal to

(1 + o(1))

(
c

1 + c
· bn+

b

1 + c
· bn

2
+

1− b
1 + c

· (1− b)n
2

)
= (1 + o(1))

n

1 + c

(
b2 + (c− 1)b+ 1/2

)
.

The above expression is a function of b (that is, a function of the starting vertex v for the cop)
and is minimized at

b = max

{
1− c

2
, 0

}
.

The theorem holds. �

It follows immediately from Theorems 3.4, 4.1, and 4.2 that the cost of drunkenness can be
arbitrarily close to any constant c ≥ 1.

Corollary 4.3. For every real constant c ≥ 1, there exists a sequence of graphs (Gn)n≥1 such
that

lim
n→∞

F (Gn) = lim
n→∞

ct(Gn)

dct(Gn)
= c.

5. Computational Aspects

In this section we deal with computational aspects of the cop against drunk robber problem.
Our analysis holds for any number of cops, that is, we no longer assume that k = c (G).

5.1. Computing expected capture time for a given strategy. Suppose that we are
given a graph and we fix a strategy before the game actually starts. We will now show how to
explicitly compute the probability of capture at time t ∈ {0, 1, 2, . . .} as well as the expected
capture time.

Fixing a strategy in advance is the best one can do for the invisible robber case (see Section 6)
but for a visible one, cops should adjust their strategy based on the behaviour of the opponent;
this will be treated in the next Subsection 5.2. However, the approach presented here is less
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demanding computationally and can be used to provide an upper bound for the optimal expected
capture time.

Let G = (V,E) be a connected graph with V = {0, 1, . . . , n− 1}. Letting

Pi,j = P (Yt = j | Yt−1 = i)

we have

Pi,j =

{
1

|N(i)| for j ∈ N(i)

0 otherwise.

Note that P is the n×n transition probability matrix governing the robber’s random walk in G
in the absence of cops. To account for capture by the cops, define a new state space V = V ∪{n},
that is, the old state space augmented by the capture state n. The corresponding (n+1)×(n+1)
transition matrix is

P =

(
P 0
0 1

)
.

In the absence of cops, the robber performs a standard random walk on G and never enters
the capture state; if however he starts in the capture state, he remains there forever: P n,n = 1.
In other words, the Markov chain governed by P contains two noncommunicating equivalence
classes: {0, 1, . . . , n− 1} and {n}.

Suppose now that a single cop is located in vertex x. We will denote the corresponding
transition probability matrix by P (x). Obviously, P (x) 6= P . The difference is caused by the
possibility of capture, which can occur in two ways.

(i) At the (t−1)-th round the robber is located at x and, in the first phase of the t-th round,
the cop moves into x. Then the robber is captured, so P x,n (x) = 1 and P x,y (x) = 0 for
y ∈ V .

(ii) At the (t − 1)-th round the robber is located at y 6= x and, in the second phase of the
t-th round, he moves from y to x. Hence the robber is captured with probability Py,x.
So, for all y ∈ V − {x}, P y,n (x) = Py,x, P y,x (x) = 0.

We can summarize the above by writing

P (x) =

(
P (x) p(x)

0 1

)
,

where P (x) has 0’s in the x-th row and column and the corresponding probabilities have been
moved into the p(x) vector. For example, letting G be the path with 5 nodes, the matrices P
and P (2) are:

P =



0 1 0 0 0 0
1/2 0 1/2 0 0 0
0 1/2 0 1/2 0 0

0 0 1/2 0 1/2 0
0 0 0 1 0 0

0 0 0 0 0 1

 , P (2) =



0 1 0 0 0 0
1/2 0 0 0 0 1/2
0 0 0 0 0 1

0 0 0 0 1/2 1/2
0 0 0 1 0 0

0 0 0 0 0 1

 .

Especially for the placement round of the game (t = 0) we need a different matrix, because
the robber does not perform a random-walk, but simply chooses an initial position uniformly
at random; if he chooses the one already occupied by the cop, then he is captured immediately.

Hence, for this round the appropriate transition matrix is P̂ (x), which is the unit matrix with
the one of the x-th row moved to the (n+ 1)-th column.
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Let πi(t) = P(Yt = i) for i ∈ V and t ∈ {0, 1, . . . , s} and π(t) = (π0(t), π1(t), . . . , πn(t)); also
let π̂ (0) =

(
1
n
, 1
n
, . . . , 1

n
, 0
)
. Then, given a strategy X = (x0, x1, . . . , xs), the above formulation

yields

π (0) = π̂ (0) P̂ (x0)

and, for t ∈ {1, 2, . . .},
π (t) = π (t− 1)P (xt−1) .

This implies that π (t) = π̂ (0) P̂ (x0)P (x1)P (x2) . . . P (xt). To illustrate this, let us continue
the example. Suppose a single cop enters the path and follows the strategy X = (0, 1, 2, 3, 4)
(start on one end of the path and move to the other one). Then we have

π (0) = π̂ (0) P̂ (x0) =
(

1/5 1/5 1/5 1/5 1/5 0
)


0 0 0 0 0 1
0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0

0 0 0 0 0 1

 =
(

0 1
5

1
5

1
5

1
5

1
5

)

π (1) = π (0)P (x1) =
(

0 1
5

1
5

1
5

1
5

1
5

)


0 0 0 0 0 1
0 0 0 0 0 1

0 0 0 1/2 0 1/2

0 0 1/2 0 1/2 0
0 0 0 1 0 0

0 0 0 0 0 1

 =
(

0 0 1
10

3
10

1
10

1
2

)

π (2) = π (1)P (x2) =
(

0 0 1
10

3
10

1
10

1
2

)


0 1 0 0 0 0

1/2 0 0 0 0 1/2
0 0 0 0 0 1

0 0 0 0 1/2 1/2
0 0 0 1 0 0

0 0 0 0 0 1

 =
(

0 0 0 1
10

3
20

3
4

)

π (3) = π (2)P (x3) =
(

0 0 0 1
10

3
20

3
4

)


0 1 0 0 0 0

1/2 0 1/2 0 0 0
0 1/2 0 0 0 1/2

0 0 0 0 0 1

0 0 0 0 0 1
0 0 0 0 0 1

 =
(

0 0 0 0 0 1
)

The elements πn(t) give the probabilities P(Xt = n) at time t, that is, the probabilities of
capture in at most t steps. The probabilities of capture exactly at time t are then given by
πn(t)− πn(t− 1). The expected capture time (conditional on strategy X being used) is

ET =
∞∑
t=1

t · (πn(t)− πn(t− 1)) .

In the above example we have

ET = 1 ·
(

1

2
− 1

5

)
+ 2 ·

(
3

4
− 1

2

)
+ 3 ·

(
1− 3

4

)
=

31

20
.

The approach can be generalized to more than one cop, by letting x = (x1, x2, . . . , xk) be a
configuration of cops and defining P (x), P (x) analogously to the one cop case. Given that the
cops follow the strategy X = (X1, X2, . . . , Xs), the transition probabilities of Y satisfy

P(Yt = j | Yt−1 = i) = Pij(Xt)

for t ≤ s. So the robber process is an inhomogeneous Markov chain, with the transitions
controlled by the cops’ actions. Markov chains of this type are called Markov Decision Processes
(MDP) or Controlled Markov Processes, where the control function is Xt; it is a (stochastic)
control in the sense that it allows us to change the transition probabilities of Yt. We can use
the MDP formulation to compute ET for any given strategy X in reasonable time. Computing
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the optimal strategy is not computationally viable; for example, with |V | = n and k cops there
may exist up to Θ((nk)t) strategies of length t (and the same number of corresponding ET ’s) to
evaluate. In the Subsection 5.2 we will present a computationally viable approach to compute
the strategy that is arbitrarily close to the optimal one.

MDP’s were introduced in the book [13]; book-length treatments are [3, 21, 25, 27]; an online
tutorial is [15]. They have been applied to a version of the cops-robber problem in [8].

5.2. Computing near-optimal strategies and minimum expected capture time. Let

us now present and algorithm to compute F (G) = ct(G)
dct(G)

with arbitrarily good precision. Basi-

cally this reduces to computing ct(G) and a good approximation of dct(G), which can be done
independently. To this end we present two algorithms, both of which have previously appeared
in the literature. To improve the presentation we assign a name to each algorithm and make a
few notational modifications; also we point out the similarity between the two algorithms (which
apparently has not been noticed before).

(i) The CAAR (C op Against Adversarial Robber) algorithm computes ctx,y(G) for every
initial cop/robber configuration (x, y). In addition, CAAR computes the optimal cop
and robber play for every (x, y). Capture time ct (G) is easily computed from ct(G) =
minx maxy ctx,y(G).

(ii) Similarly, the CADR (C op Against Drunk Robber) algorithm computes (an arbitrar-
ily good approximation of) dctx,y(G) and the (near-)optimal cop play for every (x, y);

drunken capture time dct(G) is computed from dct(G) = minx

∑
y dctx,y(G)

n
.

CAAR was introduced by Hahn and MacGillivray in [12]. We present the algorithm for the
case of a single cop (the generalization for more than one cop is straightforward). Slightly
changing notation, we will use Cx,y to denote the game duration when the cop is located at x,
the robber at y and it is the cop’s turn to move (in other words, Cx,y equals ctx,y(G)). Similarly
Rx,y denotes game duration when it is the robber’s turn to move. For both Cx,y and Rx,y we
assume optimal play by both cop and robber. Let us also define

V̂ 2 = V × V − {(x, x) : x ∈ V } ,

(that is, V 2 excluding the diagonal) and for all x ∈ V , let N [x] = N (x) ∪ {x} be the closed
neighbourhood of x. CAAR consists of the following recursion (for i = 1, 2, . . .):

∀ (x, y) ∈ V̂ 2 : R(i)
x,y = max

y′∈N [y]
C

(i−1)
x,y′ , (1)

∀ (x, y) ∈ V̂ 2 : C(i)
x,y = 1 + min

x′∈N [x]
R

(i)
x′,y. (2)

C and R are initialized with C
(0)
x,y = R

(0)
x,y = ∞ for all x 6= y. We take C

(i)
x,x = R

(i)
x,x = 0 for

i = 0, 1, 2, . . .. Then (1)-(2) is essentially equivalent to the version presented by Hahn and
MacGillivray in [12], with just one difference which we will now discuss.

In (1)-(2) the matrix C is computed iteratively: the (i−1)-th matrix C(i−1) is stored and used
in the i-th iteration to compute C(i). In numerical analysis this is known as a Jacobi iteration.
It is well known that an alternative approach to computations of this type is the Gauss-Seidel
iteration. In this iteration a single copy of C is stored and its elements are updated “in place.”
In [12], Hahn and MacGillivray present the Jacobi version of CAAR and prove that the algorithm
converges (in a finite number of steps) if and only if c (G) = 1. Hence CAAR computes the
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solution of the equations

∀ (x, y) ∈ V̂ 2 : Rx,y = max
y′∈N [y]

Cx,y′ , (3)

∀ (x, y) ∈ V̂ 2 : Cx,y = 1 + min
x′∈N [x]

Rx′,y, (4)

∀x ∈ V : Cx,x = Rx,x = 0. (5)

The interpretation of the equations is the following. Equation (3) captures the property that
from configuration (x, y) the robber moves so as to maximize the length of the game; similarly,
(4) describes the cop’s goal to minimize the game duration (since the cop moves in the first
phase of each round, 1 time unit must be added to minRx′,y); finally (5) says that the game
ends when cop and robber occupy the same vertex.

Extending the CAAR idea to the drunk robber game, let us now use Cx,y to denote dctx,y(G).
In other words Cx,y (respectively, Rx,y) is the expected game duration after the cop’s (respec-
tively, robber’s) move. Recall (see Subsection 5.1) that Py,y′(x) is the probability of the robber
transiting from y to y′, given that the cop is at x; note that P (x) is a substochastic matrix. The
analog of (1)-(2) is

∀ (x, y) ∈ V̂ 2 : R(i)
x,y =

∑
y′∈N(y)

Py,y′ (x)C
(i−1)
x,y′ , (6)

∀ (x, y) ∈ V̂ 2 : C(i)
x,y = 1 + min

x′∈N [x]
R

(i)
x′,y (7)

and the analog of (3)-(5) is

∀ (x, y) ∈ V̂ 2 : R (x, y) =
∑

y′∈N(y)

Py,y′ (x)Cx,y′ , (8)

∀ (x, y) ∈ V̂ 2 : Cx,y = 1 + min
x′∈N [x]

Rx′,y. (9)

∀x ∈ V : Cx,x = Rx,x = 0. (10)

We want (6)-(7) to converge to the solution of (8)-(10). We will discuss convergence conditions
(and initialization) presently.

Actually (6)-(7) can be simplified. Since the drunk robber does not choose his moves, we can

eliminate R
(i)
x,y from (6)-(7) and obtain the CADR algorithm recursion:

∀ (x, y) ∈ V̂ 2 : C(i)
x,y = 1 + min

x′∈N [x]

 ∑
y′∈N(y)

Py,y′ (x′)C
(i−1)
x′,y′

 . (11)

We have derived (11) from (6)-(7), which we see as an analog of (1)-(2). However, we will now
show that (11) is a version of the value iteration algorithm, introduced and studied in the MDP
literature [3, 21, 25, 27]. Consider a general MDP process with state space S, action space A,
transition matrix Q and cost matrix G(a) (that is, Gs,s′ (a) is the cost of transition s→ s′ using
action a). The state space satisfies S = ST ∪ SA, where ST are the transient states and SA the
absorbing ones; it is assumed that transitions after absorption have zero cost: Gs,s′ (a) = 0 for
s, s′ ∈ SA. Let Cs be the expected total cost of the process starting from state s and continuing
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until absorption. Then [25] C satisfies the equations

∀s ∈ ST : Cs = min
a∈A

(
Gs,s′ (a) +

∑
s′∈ST

Qs,s′ (a)Cs′

)
(12)

and the solutions to (12) can be obtained by the following value iteration:

∀s ∈ ST : C(i)
s = min

a∈A

(
Gs,s′ (a) +

∑
s′∈ST

Qs,s′ (a)C
(i−1)
s′

)
. (13)

To show that (13) can be reduced to (11) let us take ST = V̂ 2 and A = V ; in other words, states
s = (x, y) are cop/robber configurations and actions a = x′ are new cop positions. Regarding
move costs: (a) before capture every move has unit cost, (b) after capture only moves of the
form (x, x)→ (x, x) are possible and these have zero cost; in short

G(x,y),(x′,y′) (x′) =

{
1 if and only if x 6= y
0 otherwise.

Finally,

Q(x,y),(x′,y′) (a) =

{
Py,y′ (x′) if a = x′ ∈ N [x] and y′ ∈ N (y)
0 otherwise.

Using the above, it is easy to reduce (13) to (11).
The convergence of the CADR algorithm has been studied by several authors, in various

degrees of generality [8, 13, 27]. A simple yet strong result, derived in [8], uses the concept of
proper strategy : a strategy is called proper if it yields finite expected capture time. It is proved
in [8] that: if a proper strategy exists for graph G, then the Gauss-Seidel version of CADR

converges to the true C for arbitrary C(0) provided C
(0)
x,y ≥ 0 for all (x, y) ∈ V̂ 2. As we have seen

in Theorem 2.1, the cop has a proper strategy for every G. It can be proved that the Jacobi
version of CADR also converges under the same conditions.

Now, F (G) can be computed, easily. For every pair (x, y), one can obtain a desired approxi-
mation of ctx,y(G) and dctxy(G) by performing CAAR and CADR, respectively. Then

F (G) =
ct (G)

dct (G)
=

minx∈V maxy∈V ctxy (G)

minx∈V
1
|V |
∑

y∈V dctxy (G)
.

Both CAAR and CADR can be generalized for the case of k cops, replacing x by a k-tuple
x = (x1, x2, . . . , xk); however, execution time of both algorithms increases exponentially with k,
hence the algorithms are computationally viable only for small k’s. Also CADR will work for any
transition probability matrix P , not just for random walks. Hence, if desired, we can compute the
cost of drunkenness for any number of cops (not just for k = c(G)) and for non-uniform random
walks (i.e., discrete time birth-and-death processes) and other kinds of Markovian robbers.

Both CAAR and CADR can easily provide an optimal and near-optimal cop strategy in
feedback form Ux,y, that is, the optimal cop move when the cop/robber configuration is (x, y).
This is achieved by recording a minimizing x′ in (4) / (11). The optimal robber strategy Wx,y

(for the adversarial robber) can be similarly obtained by CAAR. For every (x, y) configuration
we can have more than one optimal moves, but they all yield the same (optimal) game duration.

We have implemented the CAAR and CADR algorithms in the Matlab package CopsRobber,
which can be downloaded from [16]. We have used this package to perform a number of numerical



SOME REMARKS ON COPS AND DRUNK ROBBERS 17

experiments, some of which are presented in the technical report [28]. This report also contains
presentation of the algorithms in pseudo-code and a discussion of various computational issues.

6. The Invisible Robber

In this section we present an introductory discussion of the cops and robber game when the
robber is invisible; in other words, the cops do not know the robber’s location unless he is
occupying the same vertex as one of the cops. All the other rules of the game remain the same.
This version raises several interesting questions, a full study of which will be undertaken in a
future paper.

Since the cops never see the robber until capture, they cannot use feedback strategies. In other
words, the cop strategy is determined before the game starts. This does not mean that every cop
move is predetermined because in certain cases it makes sense for the cops to randomize their
moves. Hence capture time will in general be a random variable, even in the case of adversarial
robber (who may also benefit from a randomized strategy).

Let us first examine the case of adversarial invisible robber. It is clear that, given enough
cops, expected capture time will be finite. This is obviously true for |V | cops, but in fact c(G)
cops suffice, as seen by the following theorem.

Theorem 6.1. Suppose that c(G) cops perform a random walk on a connected graph G, starting
from any initial position. The robber, playing perfectly, is trying to avoid being captured. Let
random variable T be the capture time. Then,

ET <∞.

Proof. Let G = (V,E) be any connected graph, and let ∆ = ∆(G) be the maximum degree of
G. Put k = c(G). For any configuration of cops x ∈ V k and any vertex occupied by the robber
y ∈ V , there exists a winning strategy Sx,y that guarantees that the robber is caught after at
most tx,y rounds. It is clear that cops will follow Sx,y with probability at least (1/∆)ktx,y . Now,
let us define

ε = min
x∈V k,y∈V

(1/∆)ktx,y = (1/∆)kT0 > 0, where T0 = max
x∈V k,y∈V

tx,y.

This implies that, regardless of the current position of players at time t, the probability that
the robber will be caught after at most T0 further rounds is at least ε. Moreover, corresponding
events for times t, t+ T0, t+ 2T0, . . . are mutually independent. Thus, we get immediately that

ET =
∑
t≥0

P(T > t) ≤
∑
t≥0

P
(
T >

⌊
t

T0

⌋
T0

)
=
∑
i≥0

T0P(T > iT0) ≤ T0
∑
i≥0

(1− ε)i =
T0
ε

< ∞, (14)

and we are done. �

Hence c(G) is the minimum number of cops required to capture the adversarial invisible
robber in finite expected time, since this task is at least as hard as capturing the adversarial
visible robber. Of course, generally it will take longer, compared to the visible robber case, to
capture the invisible robber. Let us define ictx,y(G, k) to be the expected capture time when the
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initial cops/robber configuration is (x, y) and both the k cops and the robber play optimally;
we also define

ict(G, k) = min
x∈V k

max
y∈V

ictx,y(G, k)

and, finally, ict(G) = ict(G, c(G)).
We now turn to the drunk invisible robber. He chooses his starting vertex uniformly at

random and performs a random walk, as before. For a given starting position x ∈ V k for k
cops, there is a strategy that yields the smallest expected capture time idctx(G, k). Cops have
to minimize this by selecting a good starting position:

idct(G, k) = min
x∈V k

idctx(G, k).

As usual, idct (G) = idct (G, c (G)) but it makes sense to consider any value of k ≥ 1. The proof
of the next theorem is exactly the same as Theorem 2.1 and so it is omitted.

Theorem 6.2. idct(G, k) <∞ for any connected graph G and k ≥ 1.

Finally, the cost of drunkenness for the invisible robber game is Fi(G) = ict(G)
idct(G)

. It follows

from the last theorem that this graph parameter is well defined (that is, finite).
Let us make a few remarks regarding the invisible robber with “infinite” speed (actually,

what we mean by this is an arbitrarily high speed). Let us define the cop number for this case
by c∞(G); it is the minimum number of cops that have a strategy to obtain a finite expected
capture time. It is clear that c(G) ≤ c∞(G) ≤ s(G), where s(G) is the search number of G, that
is, the minimum number of cops required to clean the graph in the Graph Search (GS) game
(mentioned in Section 1). We want to emphasize that the cops and robber game (with invisible,
infinite speed robber) is different from the GS game and, in particular, there are graphs for
which c∞(G) < s(G). For example, for the C3 cycle, s(C3)=2 but c∞(G) = 1, namely one cop
using a randomized strategy, can capture the invisible, adversary, infinite speed robber in T with
ET = 2. Similarly, one cop on K1,3, the star with 3 rays, can achieve ET = 11/3. Many other
examples can be found. The main reason for the discrepancy between c∞(G) and s(G) is that, in
the GS game, the fugitive is assumed omniscient and (under one interpretation) this means he
knows in advance all the cop moves (until the end of the game). In the cops and robber family
of games, on the other hand, omniscience is not assumed, either explicitly or implicitly. We
can summarize in one phrase: cleaning is harder than capturing even an infinite speed robber.
We intend to further explore this issue, as well the computation of optimal strategies for cops
chasing an invisible adversarial robber in a future publication.

We will finish this section with the computation of the cost of drunkenness for two examples
(path and cycle) involving an invisible (unit speed) robber. In both cases the computation is
possible because the optimal strategy (for both the cops and the adversarial robber) is “obvious”.
Our examples are similar to the ones we have considered for the visible robber and proofs are
omitted, since they are almost identical to those of Section 3.

Consider the path Pn again, with a single cop and an invisible robber. It is clear that the
best strategy for the cop (regardless of whether he is playing against a perfect robber or a drunk
one) is to start from one end of the path (say, from vertex 0) and move along the path until the
robber is captured. We have ict(Pn) = n − 1. When cops are playing against a drunk robber,
the expected capture time is roughly two times smaller.
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Theorem 6.3.
n

2

(
1−O

(
log n

n

))
≤ idct(Pn) ≤ n− 1

2
.

In particular, idct(Pn) = (1 + o(1))n/2 and the cost of drunkenness is

Fi(G) =
ict(Pn)

idct(Pn)
= 2 + o(1).

Let us now play the game with two cops and an invisible robber on the cycle Cn for n ≥ 4.
It is not difficult to see that s(Cn) = 2 = c(Cn). The best cop strategy is to start on vertices 1
and n; the cop occupying vertex 1 will move toward higher values, the other one will move in
the opposite direction. The game ends after ict(Cn) = b(n−1)/2c steps. When cops are playing
against a drunk robber, the expected capture time is roughly two times smaller.

Theorem 6.4. We have

n

4

(
1−O

(
log n

n

))
≤ idct(Cn) ≤ n− 1

4
.

In particular, idct(Cn) = (1 + o(1))n/4 and the cost of drunkenness is

Fi(G) =
ict(Cn)

idct(Cn)
= 2 + o(1).

7. Conclusion

Most of the results in the paper pertain to the case of a visible (adversarial / drunk) robber,
pursued by k = c(G) cops. The cases of arbitrary k and invisible robber have been briefly
touched. We conclude the current paper by listing additional questions regarding the cost of
drunkennes. We begin by listing several questions related to the visible robber.

(i) Our analysis can be expanded to strategies which use an arbitrary number of cops. As
shown in Theorem 2.1, even a single cop can catch a drunk robber in finite expected
time. Hence, for a given G we can study dct(G, k) as a function of k. Obviously this is
a decreasing function; what more can be said about it? As a first step in this direction,
the numerical approach of Section 5 can be used to explore the properties of dct(G, k)
for a given graph G.

(ii) Let us define dct(G,X) to be the expected capture time in graph G using strategy X. It
is no longer assumed that X is an optimal strategy. Under what conditions on X and/or
G will dct(G,X) be finite? Can we use the approach of Section 5 to obtain non-trivial
bounds on dct(G,X)?

(iii) A related question is whether (for a specific G and either optimal or general strategies)
expected capture time can be connected to some graph parameter such as treewidth,
pathwidth etc.

(iv) How robust are our results to slight (natural) modifications of the cops/robber game
rules? For example, would the cost of drunkenness change if we allowed the robber to
loop into its current location (that is, to perform lazy random walk)? What about a
“general” random walk (that is, with nonuniform transition probabilities). What about
directed graphs? Finally, does the situation change significantly if the cops and the robber
move simultaneously rather than the cops moving first? The algorithm of Section 5 can
be easily modified to handle these cases and numerical experiments may be useful for an
initial exploration.



20 ATHANASIOS KEHAGIAS AND PAWE L PRA LAT

One can try to obtain similar results for the invisible robber. In Section 6 we showed how our
approach can be extended (at least for certain families of graphs) to this case. In the examples
we examined (paths, cycles) the optimal cop strategy is obvious. For general graphs, finding
the search strategy which is optimal for the invisible (adversarial / drunk) robber will be more
complicated. Is there a (computationally viable, perhaps approximate) algorithm to achieve
this?

Finally, let us note that all of the above analyses adopt the cops’ point of view. It will
be interesting to study the cost of drunkenness for the cops. In other worlds, assuming an
adversarial evader and k drunk cops, can we place bounds on the increase of expected capture
time as compared to the case of adversarial cops? Theorem 6.1 may be used as a starting point
to achieve this goal.
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