
Chipping away at the edges: how long does it take?

O-YEAT CHAN and PAWEŁ PRAŁAT

May 22, 2012

Abstract. We introduce the single-node traffic flow process, which is related to both the chip-firing
game and the edge searching process. Initially, real-valued weights (instead of chips) are placed
on some vertices, and all the edges have zero weight. When a vertex is “fired”, the whole content
accumulated in this vertex is sent uniformly to all its neighbours, and each edge increases its weight
by the amount that is sent through this edge. We would like to discover the shortest firing sequence
such that the total amount of traffic that has passed through each edge is at least some fixed value.
A complete characterization for complete graphs is presented as well as discussion of other classes of
graphs.

2000 AMS Classification Numbers: 05C50, 05C57, 05C78, 05C85
Keywords: Single-node traffic flow process, graph searching, chip-firing game.

1. Introduction

Given a network where traffic flows between nodes, it is often the case that the life
of a connection between the nodes is dependent on the total amount of traffic that has
passed through it. The question naturally arises, “what is the minimum amount of
time that must pass before all the connections have worn out?” A related problem is
if the traffic must pay a toll to travel from one node to its neighbour, how long will it
take for each connection to recover its costs?

We may model this process as a discrete process where a certain amount of traffic
flows between the nodes at each step. In the present treatment we consider the case
where the total amount of moveable traffic in the network is fixed, and all the moveable
traffic in some node moves evenly to all the neighbouring nodes in each step.

The process we study here is similar to the cleaning process [14, 9, 10, 2, 17, 15, 16,
11], and is related to the chip-firing game (see, for example, [3, 5]) and edge searching
(see, for example, [1, 6]). In the past thirty years, the edge-searching problem and
similar type problems have attracted researchers from various fields of mathematics
and computer science and have been linked to pebble games [12], that model sequential
computation; to assuring privacy when using bugged channels [8]; and to VLSI circuit
design [7]. The chip-firing game also has rapidly become an important and interesting
object of study in structural combinatorics, in part because of its relation to the Tutte
polynomial and group theory [13]. It has also been studied in computer science [5],
physics [3], and social science [4].

1

2

We formally describe the process below.

Definition 1.1. Let G = (V,E) be a connected, undirected graph, and let ωt : V ∪E →
R+ ∪ {0} such that ωt(v) and ωt(uv) denote the weight of a vertex v and an edge
uv, respectively at time t ∈ {0, 1, . . . }. Define the single-node traffic flow process
P = P(G,ω0) = {ωt}Tt=0 of G with an initial configuration ω0 and total weight of
ω =

∑
v∈V ω0(v) as follows:

(1) Set t := 0 and the weight of all edges to zero (that is, ω0(uv) = 0 for each
uv ∈ E).

(2) If no edge has weight less than one (that is, minuv∈E ωt(uv) ≥ 1), then stop the
process, set T = t, return the firing sequence of vertices α = (α1, α2, . . . , αT)
and the sequence of weights β = (β1, β2, . . . , βT) that have been used during
the process. Otherwise, go to step (3)

(3) Set t := t + 1. Then fire the content of any vertex αt by moving βt =
ωt−1(αt)/ deg(αt) units to each neighbour of αt. Each edge incident to αt then
increases its weight by βt. More precisely, ωt(αt) = 0, for every v ∈ N(αt),
ωt(αtv) = ωt−1(αtv) + βt and ωt(v) = ωt−1(v) + βt (the other values of ωt
remain the same as ωt−1).

(4) Go to step (2).

Note that the total number of moveable units at any step of the process is equal to
ω. Note also that it is possible that the process never stops (for example, one can fire
the same vertex all the time) but for any connected graph there is a firing sequence
that can be used so that the process is finite, unless the total weight is zero.

Theorem 1.2. Let G = (V,E) be any connected graph and ω0 be any initial configu-
ration of a non-zero total weight ω. There is a firing sequence α that can be used to
finish the process; that is, to get T <∞.

Proof. Consider the following greedy algorithm that fires a vertex of a maximum weight
at each step of the process. It is clear that the weight of each vertex fired is at least
the average weight; that is, ωt−1(αt) ≥ ω/|V | > 0. We show that this algorithm yields
T < ∞. For a contradiction, suppose that the algorithm runs forever; that is, there
is a vertex that is fired an infinite number of times. Note that after d|V | deg(v)/ωe
firings of a vertex v, each edge adjacent to v must have weight at least one. Therefore
there must also be at least one vertex that is fired a finite number of times. Consider
a vertex v that is fired a finite number of times and is adjacent to the vertex u that is
fired an infinite number of times. Suppose the final firing of v occurs at step t = T .
Since u is fired an infinite number of times, after t = T each time the content of u is
fired v receives at least ω/(|V | deg(u)) units of traffic. As the total number of moveable
units is ω, v eventually accumulates enough units to be fired. Contradiction. �

Based on the Theorem 1.2 the following definition is natural.

Definition 1.3. Let G = (V,E) be any connected graph and ω0 be any initial configu-
ration of a non-zero total weight ω. Let its life f(G,ω0) be the minimum value of T that
can be realized by the single-node traffic flow process. In particular, fω(G) = f(G,ω0),

3

where ω0 is an initial configuration with total weight ω where every vertex has equal
weight; that is, ω0(v) = ω/|V |, v ∈ V .

In light of definition 1.3, the process can also be viewed as an one-person combina-
torial game on graphs (f(G,ω0) is the score obtained by a perfect player).

The remainder of the paper is organized as follows. In the next section, we investigate
the process for complete graphs on n vertices. In particular, we obtain a complete
characterization of the life of Kn for any initial configuration ω0. In Section 3 we
extend our results to complete bipartite graphs, obtaining an order-of-magnitude result
for the life fω(Kn,n). It seems that analyzing other families of graphs is much more
sophisticated. As an example, we consider stars in Section 4, and conclude the paper
with a few open problems in Section 5.

2. Complete graphs

We begin by proving some results for complete graphs G = Kn+1 where the initial
configuration is ω0. In fact, we prove that the number of steps needed by a greedy algo-
rithm that always fires a vertex of maximum weight is asymptotically equal to fω(Kn+1)
for large n. To that end, we first prove some properties of the greedy approach.

Let x1 ≥ x2 ≥ · · · ≥ xn > 0 denote a sorted sequence of weights for Kn+1. (Note
that the vertex that has been fired in the last round has weight zero so n numbers is
enough to model the behaviour of Kn+1.) The greedy algorithm can be modelled by
the map F : Rn → Rn which replaces x1 by x1/n and adds x1/n to all the other n− 1
numbers, and then sorts them in non-increasing order (again we ignore the vertex of
weight zero that results from each firing). That is, F is given by

F ((x1, . . . , xn)T) = (x2 + x1
n
, x3 + x1

n
, . . . , xn + x1

n
, x1
n

)T .

Since F is linear on the xi, we may rewrite the map in terms of multiplying the vector
~x = (x1, . . . , xn)T by an n× n matrix An given by

An :=

1/n 1 0 · · · 0
1/n 0 1 0
...

...
1/n 0 0 1
1/n 0 0 · · · 0

so that F k(~x) = Akn~x for any k ∈ N. Note that after at most n iterations the internal
ordering becomes strictly decreasing.

Theorem 2.1. Denote by ~x the column vector (x1, . . . , xn)T and by ~s the vector
(n, n− 1, · · · , 1)T . For any ~x ∈ Cn we have

lim
k→∞

Akn~x =
2(x1 + · · ·+ xn)

n(n+ 1)
~s. (2.1)

To prove Theorem 2.1, we use the following theorem from the theory of polynomials
[18, p. 255].

4

Theorem 2.2 (Eneström-Kakeya). Let p(z) :=
∑n

j=0 ajz
j be a polynomial of degree

n with positive real coefficients. Then all the zeroes of p(z) lie inside the annulus
α ≤ |z| ≤ β, where

α = min
0≤j<n

{aj/aj+1}, and β = max
0≤j<n

{aj/aj+1}.

Proof of Theorem 2.1. Let An(m) be the m×m matrix of the form of An; that is, the
m × m matrix with 1/n down the first column, ones on the upper off-diagonal, and
zeroes everywhere else. The characteristic equation fm,n(λ) = det(An(m) − λIm) is
given by

det(An(m)− λIm) = (1/n− λ)(−λ)m−1 − (−λ)m−2/n+ (−λ)m−3/n− · · ·+ (−1)m−1/n

=
(−1)m−1

n
(1 + λ+ · · ·+ λm−1 − nλm).

The case we are interested in is at m = n, so that

fn,n(λ) = fn(λ) =
(−1)n

n
(nλn − λn−1 − · · · − 1)

=
(−1)n

n
(λ− 1)(nλn−1 + (n− 1)λn−2 + · · ·+ 1).

Clearly λ = 1 is a simple zero of fn. Since n(−1)n(λ− 1)fn = nλn+1− (n+ 1)λn + 1
has derivative n(n+ 1)λn−1(λ− 1), we see that fn in fact has n distinct simple zeroes.
Eneström-Kakeya implies that aside from λ = 1, the remaining n − 1 zeroes of fn lie
in the annulus 1/2 ≤ |λ| ≤ 1 − 1/n. Thus An has n distinct eigenvalues λ1, λ2, . . . λn,
with λ1 = 1 and 1/2 ≤ |λi| ≤ 1 − 1/n for 2 ≤ i ≤ n. If we let ~vi be the eigenvector
associated with λi, then since the eigenvalues are distinct, the eigenvectors are linearly
independent over C and so any ~x ∈ Cn may be expressed as a unique linear combination
of the ~vi. That is,

~x =
n∑
i=1

ci~vi

for some constants ci. Therefore, we find that

lim
k→∞

Akn~x = lim
k→∞

Akn

n∑
i=1

ci~vi = lim
k→∞

n∑
i=1

ciλ
k
i ~vi

= c1 ~v1 + lim
k→∞

n∑
i=2

λki ~vi = c1 ~v1.

It is easy to check that ~v1 = ~s. So all that remains is to calculate c1. But we note that
multiplying any vector ~x by An preserves the sum of the components of ~x. Thus we
have the condition

x1 + x2 + · · ·+ xn = c1(n+ (n− 1) + · · ·+ 1).

Solving for c1 completes the proof. �

5

Remark 2.3. We note that if the sum of the weights x1 + · · ·+ xn is non-zero, then in
fact the algorithm that fires each vertex in turn will be eventually greedy, in the sense
that the vertex with the largest absolute value of the weight will be fired in each step.

Corollary 2.4. Let n be fixed and let ~x and ~s be as in Theorem 2.1. Then the rate of
convergence, as k tends to ∞, is∥∥∥∥Akn~x− 2(x1 + · · ·+ xn)

n(n+ 1)
~s

∥∥∥∥ = O

(
n

(
1− 1

n

)k)
, (2.2)

where the big-O constant depends on ~x.

Proof. From the proof of Theorem 2.1 we have that∥∥∥∥Akn~x− 2(x1 + · · ·+ xn)

n(n+ 1)
~s

∥∥∥∥ =

∥∥∥∥∥
n∑
i=2

ciλ
k
i ~vi

∥∥∥∥∥ . (2.3)

Applying the triangle inequality and using the fact that λi ≤ 1 − 1/n for 2 ≤ i ≤ n,
we find∥∥∥∥∥

n∑
i=2

ciλ
k
i ~vi

∥∥∥∥∥ ≤ (n− 1)

(
max
2≤i≤n

‖ ~civi‖
)(

1− 1

n

)k
= O

(
(n− 1)

(n− 1)k

nk

)
as required. �

We also have a lower bound for the error.

Corollary 2.5. Let n be fixed and let ~x and ~s be as in Theorem 2.1. If ~x 6= 2(x1 + · · ·+ xn)

n(n+ 1)
~s,

then the difference is bounded below by∥∥∥∥Akn~x− 2(x1 + · · ·+ xn)

n(n+ 1)
~s

∥∥∥∥ = Ω
(
2−k
)
, (2.4)

where, as above, the big-Ω constant depends on ~x and n.

Proof. Let L = max2≤i≤n |λi|. Applying the triangle inequality to (2.3) we find that∥∥∥∥∥
n∑
i=2

ciλ
k
i ~vi

∥∥∥∥∥ ≥
∣∣∣∣∣∣∣∣

∑
2≤i≤n

|λi|=L, ci 6=0

Lk‖ci~vi‖ −
∑

2≤i≤n
|λi|<L

λki ‖ci~vi‖

∣∣∣∣∣∣∣∣ = Ω(Lk)

as k → ∞, since for fixed n and ~x, the ci and ~vi are also fixed. Since L ≥ 1/2 by
Theorem 2.2, we have the desired result. �

We can also prove explicit bounds for the special case ~x = (x, . . . , x)T .

Corollary 2.6. Let ~x = (x, . . . , x)T and denote by x1(k) the first coordinate of Akn~x.
Then we have ∣∣∣∣x1(k)− 2

nx

n+ 1

∣∣∣∣ ≤ xn(n− 1)

n+ 1

(
n− 1

n

)k+1

. (2.5)

6

Proof. It is easy to check that for each eigenvalue λi, the corresponding eigenvector is

~vi =

nλi

−λi + nλ2i
...

−λi − λ2i − · · · − λn−2i + nλn−1i

1

 . (2.6)

To obtain explicit bounds, we need to determine ci for i ≥ 2. We claim that ci =
x

n+ 1
works. That is, we would like to show that for each 1 ≤ j ≤ n we have

n∑
i=1

ci(nλ
j
i −

j−1∑
`=1

λ`i) = x

for that choice of ci. Recalling that c1 = 2x/(n+ 1) and λ1 = 1, we calculate (dividing
through by x for simplicity),

n∑
i=1

ci(nλ
j
i −

j−1∑
`=1

λ`i) =
n− j + 1

n+ 1
+

n∑
i=1

1

n+ 1
(nλji −

j−1∑
`=1

λ`i).

Let Sk denote the elementary symmetric polynomial of degree k on λ1, . . . , λn and Pk
denote the sum of the kth powers of λi. That is,

Pk :=
n∑
i=1

λki .

Since the λi are all the zeroes of fn(λ), we have Sk = (−1)k(normalized coefficient of λn−k) =
(−1)k−1/n for 1 ≤ k ≤ n and S0 = 1. Now, by the Newton-Girard Formulas [18, p. 8,
eq. 1.2.9] we have

Pk = (−1)k−1kSk +
k−1∑
j=1

(−1)j−1SjPk−j =
k

n
+

k−1∑
j=1

Pj
n
. (2.7)

Therefore,

n− j + 1

n+ 1
+

n∑
i=1

1

n+ 1
(nλji −

j−1∑
`=1

λ`i) =
n− j + 1

n+ 1
+

nPj
n+ 1

− 1

n+ 1

j−1∑
`=1

P`

=
n− j + 1

n+ 1
+

j

n+ 1
= 1,

as required.
It is now a simple matter to estimate the size of the first coordinate in Akn~x− c1 ~v1.

Since

Akn~x− c1 ~v1 =
n∑
i=2

λki ci~vi,

7

we find that ∣∣∣∣x1(k)− 2nx

n+ 1

∣∣∣∣ =

∣∣∣∣∣
n∑
i=2

λki
xnλi
n+ 1

∣∣∣∣∣ ≤ xn(n− 1)

n+ 1
max
2≤i≤n

|λi|k+1

≤ xn(n− 1)

n+ 1

(
n− 1

n

)k+1

.

�

Corollary 2.7. Let x1(k) be as in Corollary 2.6. Then we have

|x1(k)| ≤ xn

n+ 1

(
1 +

1

n

)n
<

xne

n+ 1
(2.8)

for all k ≥ 0.

Proof. By the proof of Corollary 2.6, we have

x1(k) =
n∑
i=1

ciλ
k
i nλi =

xn

n+ 1
Pk+1 +

xn

n+ 1
λk+1
1 .

Since the λi satisfy fn(λi) = 0, we find that for k ≥ n,

λki =
λk−1i + · · ·+ λk−ni

n
.

Thus

Pk =
Pk−1 + · · ·+ Pk−n

n
(2.9)

for all k ≥ n. But using (2.7) we have

Pk =

(
1 +

1

n

)k
− 1

for 1 ≤ k ≤ n, so 0 < P1 < P2 < · · · < Pn. Combining this with (2.9) we find that

0 ≤ Pk ≤ Pn =

(
1 +

1

n

)n
− 1

for all k ≥ 1. This gives the desired result. �

We are now ready to prove the main theorem on complete graphs.

Theorem 2.8. For n ≥ 1 and ω some function of n, we have

fω(Kn+1) =
n(n+ 1)2

4ω
+O(n log n).

In particular, for ω = o(n2/ log n)

fω(Kn+1) =
n3

4ω
(1 + o(1)).

8

Proof. In order to get an upper bound, we analyze a greedy algorithm that always
fires the content of a vertex of maximum weight. Let V = {v1, v2, . . . , vn+1} such that
ω0(v1) = ω0(v2) = · · · = ω0(vn+1) = ω

n+1
. It is easy to see that the firing process can

be divided into a number of rounds where at each round vertices v1, v2, . . . , vn+1 are
processed in increasing order of labels. After the first step, we obtain an equivalent
system with ω(v2) = · · · = ω(vn+1) = ω

n+1
+ 1

n
ω
n+1

= ω
n
, ω(v1) = 0. From Corollary 2.6

with x = ω/n it follows that at time t of the process we fire the content of a vertex of
weight

ωt−1(αt) = nβt ≥ ω

(
2

n+ 1
− n− 1

n+ 1

(
1− 1

n

)t)
≥ ω

(
2

n+ 1
− e−t/n

)
.

Thus, during the round k the weight of each vertex processed is at least ω
(

2
n+1
− e−k(n+1)/n

)
.

For early rounds (say, up to and including round k0), one can use a trivial lower bound
of ω

n+1
. Since at each round each edge increases its weight two times, we find that any

k (and k0) such that the inequality

2ωk0
n(n+ 1)

+
k∑

i=k0+1

2ω

n

(
2

n+ 1
− e−i(n+1)/n

)
≥ 1

holds will give an upper bound on the number of rounds. Simplifying the left-hand
side gives

(4k − 2k0)ω

n(n+ 1)
− 2ωe−(k0+1)(1+1/n)

n

1− e−(k−k0−1)(1+1/n)

1− e−1−1/n
≥ 1.

This is implied if the inequality (with k0 = log n)
(4k − 2 log n)ω

n(n+ 1)
− 2ω

n2(e1+1/n − 1)
≥ 1

holds. Thus we have

k ≥ n(n+ 1)

4ω
+

n+ 1

2n(e1+1/n − 1)
+

log n

2
=
n(n+ 1)

4ω
+O(log n)

as n→∞.
For a lower bound, we use the fact that at the end of the process, each edge has

weight at least one; that is,
N∑
t=1

nβt ≥
(
n+ 1

2

)
. (2.10)

Note that this is a necessary condition for the process to finish but clearly not a
sufficient one. Define by S(~a,N) the maximum over all processes with exactly N steps
of the sum

N∑
t=1

nβt

with initial configuration ~a, and S(~a,N, k) the analogous maximum provided the first
vertex fired is the kth component of ~a. We now show by induction that the greedy
algorithm gives S(~a,N) for all ~a and N . The base case N = 1 is trivial. For the

9

inductive step, consider a process of length N + 1 ≥ 2. We start with an initial
configuration ω0; let xi = ω0(vi), i ∈ [n + 1] (recall that x1 ≥ x2 ≥ · · · ≥ xn+1). We
could start the process by firing vertex vk, k ≥ 2, to get a sorted sequence of weights

~a :=
(
x1 +

xk
n
, . . . , xk−1 +

xk
n
, xk+1 +

xk
n
, . . . , xn+1 +

xk
n

)T
(where we drop the zero term from the vector) but it appears that firing vertex vk−1
gives a result which is not worse than the previous one. After firing vk−1 we get

~b :=
(
x1 +

xk−1
n

, . . . , xk−2 +
xk−1
n

, xk +
xk−1
n

, . . . , xn+1 +
xk−1
n

)T
and in both situations a greedy algorithm has to be used to maximize the sum we
consider, by the inductive hypothesis. Let ∆ = xk−1 − xk ≥ 0. The process starting
with ~b can be seen as a combination of two processes: the process starting with ~a and
the process starting with

~b− ~a =

(
∆

n
, . . . ,

∆

n
,
∆

n
−∆,

∆

n
, . . . ,

∆

n

)T
=

∆

n
(1, 1, . . . , 1)T −∆~ek−1 = ∆(An − A2−k

n)~e1

(here ~ek is the elementary unit vector with a 1 in the kth component and 0 everywhere
else, so that Ak−1n ~ek = ~e1). In other words, ω~bi (v) in the process starting with ~b can be
obtained as a sum of two values ω~ai (v) and ω~b−~ai (v) for corresponding processes starting
with ~a and with ~b−~a, respectively. Applying the greedy algorithm gives the sequence
of weight vectors Ajn~a and Ajn~b = Ajn~a+ Ajn(~b− ~a) after j steps. Therefore

S(~a,N) = g

(
N−1∑
i=0

Ain~a

)
:= first coordinate of

N−1∑
i=0

Ain~a,

and

S(~b,N) = g

(
N−1∑
i=0

(
Ain~a+ Ain(~b− ~a)

))
.

Thus the difference S(~x,N + 1, k − 1)− S(~x,N + 1, k) is

S(~x,N + 1, k − 1)− S(~x,N + 1, k) = ∆ + S(~b,N)− S(~a,N)

= ∆ + g

(
N−1∑
i=0

Ain(~b− ~a)

)

= ∆

(
1 + g

(
N−1∑
i=0

(Ai+1
n − Ai+2−k

n)~e1

))
.

Define qs :=
∑s

i=0 g(Ain~e1), with q0 = 1 and q−s = 0 for all s > 0. It is easy to see
that qs is positive and increasing for s ≥ 0 since the summands are positive for i ≥ 1.

10

Therefore,

S(~x,N + 1, k − 1)− S(~x,N + 1, k) = ∆

(
1 + g

(
N−1∑
i=0

(Ai+1
n − Ai+2−k

n)~e1

))
= ∆(1 + qN − q0 − qN−1+(2−k)) = ∆(qN − qN−(k−1)) ≥ 0.

This finishes the inductive proof.
To show the lower estimate, once again apply Corollary 2.6 to show that at time t

the maximum weight of the vertices is bounded above by

ωt−1(αt) = nβt ≤ ω

(
2

n+ 1
+
n− 1

n+ 1

(
1− 1

n

)t)
≤ ω

(
2

n+ 1
+ e−t/n

)
.

For early steps (say, up to and including step t0) we can apply Corollary 2.7 to estimate
that

nβt ≤
ωe

n+ 1
.

Thus the largest positive integer T ≥ t0 that satisfies
t0∑
t=1

ωe

n+ 1
+

T∑
t=t0+1

ω

(
2

n+ 1
+ e−t/n

)
≤ n(n+ 1)

2

gives a lower bound for fω(Kn+1). Simplifying we find the left-hand side is bounded
above by

ω(2T + (e− 2)t0)

n+ 1
+ ωe−(t0+1)/n(T − t0).

Choosing t0 = 2n log n we get
ω(2T + 2(e− 2)n log n)

n+ 1
+
ωe−1/n(T − 2n log n)

n2
≤ n(n+ 1)

2
,

and solving for T we find that

T ≥ n(n+ 1)2

4ω
−O(n log n)

is necessary for (2.10) to hold. �

The above techniques extend to arbitrary initial configurations ω0 = (x1, x2, · · · , xn, 0)
for Kn+1.

Theorem 2.9. For sorted initial configurations ω0 = (x1, x2, . . . , xn, 0) on Kn+1, where
both x1 and ω = x1 + · · ·+ xn may depend on n, we have

n(n+ 1)2

4ω
−O

(
n2x1
ω

log n

)
≤ fω(Kn+1) ≤

n(n+ 1)2

4ω
+O(n log(nx1/ω)). (2.11)

Proof. Beginning with a sorted configuration ~x = (x1, x2, . . . , xn)T for Kn+1 with sum
ω, we may decompose it as

~x =
n∑
i=0

xi~ei =

(
n∑
i=0

xiA
−i
n

)
~e1 =

(
n∑
i=0

xiA
−i−1
n

n(n+ 1)

)(
2~v1 +

n∑
j=2

~vj

)
,

11

where as before ~vi, 1 ≤ i ≤ n, are the eigenvectors of An, corresponding to the eigen-
values λi with λ1 = 1. This implies

~x =
2ω

n(n+ 1)
~v1 +

n∑
j=2

(
n∑
i=1

xiλ
−i−1
j

n(n+ 1)

)
~vj.

Thus the first coordinate x1(k) of Akn~x is bounded by∣∣∣∣x1(k)− 2ω

n+ 1

∣∣∣∣ =

∣∣∣∣∣
n∑
j=2

(
n∑
i=1

xiλ
k−i−1
j

n(n+ 1)

)
nλj

∣∣∣∣∣
≤ x1n(n− 1)

n+ 1

(
1− 1

n

)k−n
.

We also have the uniform bound

|x1(k)| =

∣∣∣∣∣ ω

n+ 1
+

n∑
j=1

(
n∑
i=1

xiλ
k−i−1
j

n(n+ 1)

)
nλj

∣∣∣∣∣
≤ ω

n+ 1
+

∣∣∣∣∣
n∑
i=1

xi
n+ 1

Pk−i

∣∣∣∣∣ ≤ ω

n+ 1
+
nx1(e− 1)

n+ 1

valid for k ≥ n. But we know for k < n, x1(k) can be bounded by the first coordinate
of the process that starts with (x1, x1, . . . , x1). Thus the bound

|x1(k)| ≤ nx1e

n+ 1

is valid for all k ≥ 0. Now we apply the same techniques as before to obtain upper and
lower bounds for fω0(Kn+1). The relevant inequality for the upper bound is

(4k − 2k0)ω

n(n+ 1)
− 2x1e

−(k0−1+1)(1+1/n)

1− e−1−1/n
≥ 1.

Setting k0 = log(nx1/ω) and solving for k gives the result. For the lower bound the
relevant inequality is

t0∑
t=1

nx1e

n+ 1
+

T∑
t=t0+1

(
2ω

n+ 1
+
nx1e

n+ 1
e−t/n

)
≤ n(n+ 1)

2
.

Using t0 = 2n log n as before works. �

3. Complete bipartite graphs

The case of complete bipartite graphs Kn,n is much more delicate compared to the
analysis of complete graphs in the previous section. An upper bound is easy to obtain:

Theorem 3.1. For any n ≥ 1 and ω a function of n, we have

fω(Kn,n) ≤ max

(
n3

ω
+
n

2
, n

)
. (3.1)

12

Proof. Consider the algorithm which fires every vertex of one partite set in some order,
then the vertices of the other partite set, and so on. After the first n steps each vertex
not fired will have weight ω/n and so after k rounds of firing all n vertices of a partite
set (including the first round, of course), each edge has weight

ω

n2
(k − 1) +

ω

2n2
.

In order for this to be greater than 1 we require

k ≥ n2

ω
+

1

2

rounds. �

We note that the algorithm in the above proof is greedy after n steps. It is natural
to ask whether greedy improves this bound, and whether it will give an optimal lower
bound as in the case of complete graphs. Unfortunately, even if we ignore the question
of how to choose between two vertices of equal weight in asymmetric cases, the following
example shows that a greedy algorithm does not necessarily maximize the edge-sum
for arbitrary length processes as in the case of complete graphs.

Example 3.2. Consider the graph K2,2 with partite sets (x1, x2) and (y1, y2) and
weights ω(x1) = 1.5, ω(x2) = 1, ω(y1) = 2, ω(y2) = 0. Then a greedy algorithm would
fire vertices in the order y1, x1, x2 in 3 steps, giving an edge sum of 6.5. However, if
we fire the vertices in the order x1, y1, x2, then the edge sum becomes 6.625.

While the methods of the previous section no longer extend directly to Kn,n, we may
still obtain non-trivial lower bounds.

Theorem 3.3. For any n ≥ 1 and ω a function of n, we have

fω(Kn,n) ≥ max

(
n3

2ω
−O(n log n), n

)
. (3.2)

Proof. The main idea is to reduce the problem to something treatable by our previous
methods. To that end, given our complete bipartite graph G = Kn,n with partite sets
X = (x1, . . . , xn) and Y = (y1, . . . , yn) we associate with it a graph G′ by contracting
each pair of vertices (xi, yi) to a single vertex zi, while keeping the edge xiyi as a loop
on zi. At any time t, we let the weight of the vertices in G′ be given by ωt(zi) = ωt(xi)+
ωt(yi). Then any firing sequence (vi)

N
i=1 in G corresponds to some firing sequence in

G′ where only some fraction 0 < rt ≤ 1 of ωt(zi) is fired. We claim that a greedy
algorithm with rt = 1 for all t maximizes the N -step edge-sum in G′ for every N . We
note that the greedy algorithm on G′ with rt = 1 for all t can be modelled by the same
matrix An as in the complete graph case. That is, the sorted vector of the n vertex
weights at time t+1 is given b y multiplying the vector at time t by An. Thus, we only
need to show that firing any vertex with rt = 1 gives a larger edge-sum than firing that
same vertex with rt < 1. The proof now proceeds in exactly the same way as before.
Let S(~a,N), and S(~a,N, k) be as before, and let S(~a,N, k, r) be the corresponding
maximum given that the vertex zk is fired first and only rω(zk) is fired. In particular

13

S(~a,N, k) = S(~a,N, k, 1). Starting with a sorted sequence of weights ~w = (w1, . . . , wn),
firing a fraction r of vertex k gives a sorted sequence of weights

~a := (w1, w2, . . . , wk−1, wk+1, . . . , wj, (1− r)wk, wj+1, . . . , wn)T +
rwk
n

(1, . . . , 1)T ,

where wj ≥ (1 − r)wk > wj+1. In the case r = 1 we have j = n and we denote this
vector by ~b. Then

D := S(~w,N + 1, k)− S(~w,N + 1, k, r) = (1− r)wk + S(~b,N)− S(~a,N)

= (1− r)wk + g

(
N−1∑
i=0

Ain(~b− ~a)

)
,

where as before g extracts the first coordinate of its argument. We decompose ~b−~a as

~b− ~a = (1− r)wk
n

(1, 1, . . . , 1)T + (wj+1 − (1− r)wk)~ej +
n∑

i=j+1

(wi+1 − wi)~ei

= (1− r)wkAn~e1 + (wj+1 − (1− r)wk)A1−j
n ~e1 +

n∑
i=j+1

(wi+1 − wi)A1−i
n ~e1,

with wn+1 := 0. Thus,

D = (1− r)wk

+ g

(
N−1∑
i=0

(
(1− r)wkAi+1

n + (wj+1 − (1− r)wk)Ai+1−j
n +

n∑
m=j+1

(wm+1 − wm)Ai+1−m
n

)
~e1

)

= (1− r)wk(1 + qN − q0) + (wj+1 − (1− r)wk)qN−1−(j−1) +
n∑

m=j+1

(wm+1 − wm)qN−1−(m−1)

≥ (qN − qN−j) (1− r)wk +
n∑

m=j+1

wm(qN−m−1 − qN−m) ≥ 0.

Now we apply the same analysis as in the previous section, except the edge-sum
must now be at least n2 rather than

(
n+1
2

)
. The result follows immediately. Note that

we always need at least n steps since that is the size of the minimum vertex cover. �

It is clear that the lower bound is not best possible, since the process on the complete
graph G′ with rt = 1 at every step cannot occur in the corresponding Kn.n, as content
fired from one partite set ends up in the other. We therefore suspect that the upper
bound is closer to the true value for fω(Kn,n). One might ask, can a greedy algorithm
yield better bounds than the process given in the proof of Theorem 3.1? It turns out
that one can show, using the same linear algebra techniques from the previous section,
that

14

• The greedy algorithm applied directly to ω0 on Kn,n is the same as applying
the greedy algorithm alternately to each partite set, and this algorithm is well-
defined. That is, the map can be modelled by the matrix

Bn :=

1/n 1 0 0 · · · 0
0 0 1 0 0

1/n 0 0 1 0
...

...
0 0 0 0 1

1/n 0 0 0 · · · 0

 .

acting on the vector (x1, y1, . . . , xn−1, yn−1, xn)T , where xi ≥ xi+1 belong to one
partite set and yi ≥ yi+1 ≥ yn = 0 belong to the other partite set.
• The greedy algorithm requires at least n3/ω − O(n log n) steps and at most
n3/ω +O(n2) steps.

4. Stars

In this section, we consider another simple class of graphs: stars. The lack of sym-
metry between the two partite sets causes a lot of difficulty, and so we only focus on
obtaining upper bounds for fω(K1,n) in this work.

In order to warm up, let us consider a star with 4 rays (vertex v is adjacent to v1,
v2, v3, and v4) with the total weight of 5. We look at the ratio between the increase
in weight of each edge to the number of moves in each round, in order to find the
most efficient strategy for general initial configurations. Ignoring for the moment the
condition that we stop the process when every edge attains weight 1 (or equivalently,
scale the initial configuration by an appropriate factor to expose asymptotic behaviour),
let us consider the following three different approaches:

• Process vertices in the following order: v1, v, v2, v, v3, v, v4, v, and so on. The
process converges to the stationary distribution on vi’s (1/2, 1, 3/2, 2) (vi with
the highest value fire 2 units and then v fire 1/4 to each of its neighbours). Each
edge increases its weight by 4 during 8 moves. The ratio between the increase
and the number of moves is 1/2.
• Process vertices in the following order: v1, v2, v, v3, v4, v, and we converge to

(5/6, 5/6, 10/6, 10/6). Each edge receives 10/3 units during 6 moves, so the
ratio is 5/9 > 1/2.
• Process vertices in the following order: v1, v2, v3, v4, v, getting immediately

(5/4, 5/4, 5/4, 5/4). Each edge receives 5/2 units during 5 moves, and we are
back to 1/2 again.

Trying to discover the best general strategy, let us consider a star with n = 2k rays
for k ∈ N. Fix an i in 0 ≤ i ≤ k and create 2k−i groups consisting of 2i vertices each.
We process all vertices in a group with maximum content, then v, and repeat. In the
stationary distribution, every vertex of group j (j = 1, 2, . . . , 2k−i) has value of jx/2k−i

15

(in particular, the last one has value x). Since the sum over all vertices is ω, we get
2k−i∑
j=1

2i
jx

2k−i
= ω,

so x = 2ω/(2k + 2i). During the whole cycle (2k + 2k−i moves) each edge receives 2x
units. The ratio is then 4ω

(2k+2i)(2k+2k−i)
, which is maximized for i = bk/2c. Therefore,

it seems then that the best strategy is to split vi’s into roughly
√
n sets of cardinalities

as close to each other as possible. It is natural to conjecture that

fω(K1,n) =
n2

4ω
(1 + Θ(1/

√
n))

for ω small enough. Unfortunately, this still remains an open problem.

5. A few open problems

We already mentioned about the conjecture for complete bipartite graphs and stars.
We would like to finish the paper with one more open problem. Let G be any connected
graph on n vertices and consider its life fω(G) with ω = n (that is, initially each vertex
has weight of 1). It seems that fω(G) should depend on the density of G. It follows
from our results that

fω(Kn)

|E(Kn)|
=

1

2
+ o(1),

fω(Kn,n)

|E(Kn,n)|
≤ 1 + o(1),

fω(K1,n)

|E(K1,n)|
≤ 1

4
+ o(1).

Let G(n) be a family of connected graphs on n vertices. It it natural to ask whether
the following limits exist, and if so to find their values.

M = lim
n→∞

max
G∈G(n)

fω(G)

|E(G)|
,

m = lim
n→∞

min
G∈G(n)

fω(G)

|E(G)|
.

In particular, is it true that 0 < m < M = O(1)?

References

[1] B. Alspach, Searching and sweeping graphs: a brief survey, International Conference in Combi-
natorics, Le Matematiche, Vol LIX (2004) - Fasc. I-II, 5–37.

[2] N. Alon, P. Prałat, N. Wormald, Cleaning d-regular graphs with brushes, SIAM Journal on
Discrete Mathematics 23 (2008), 233–250.

[3] P. Bak, C. Tang, K. Wiesenfeld, Self-organized criticality: an explanation of the 1/f noise, Physics
Review Letters 59(4) (1987) 381–384.

[4] N. Biggs, Algebraic potential theory on graphs, The Bulletin of the London Mathematical Society
29 (1997) 641–682.

16

[5] A. Björner, L. Lovász, W. Shor, Chip-firing games on graphs, European Journal of Combinatorics
12 (1991) 283-291.

[6] D. Dyer, Sweeping graphs and digraphs, Ph.D. thesis, Simon Fraser University, 2004.
[7] M. Fellows, M. Langston, On search, decision and the efficiency of polynomial time algorithm,

21st ACM Symp. on Theory of Computing (STOC 89), (1989) 501–512.
[8] M. Frankling, Z. Galil, M. Yung, Eavesdropping games: A graph-theoretic approach to privacy

in distributed systems, Journal of ACM 47 (2000) 225–243.
[9] S. Gaspers, M.E. Messinger, R. Nowakowski, P. Prałat, Clean the graph before you draw it!,

Information Processing Letters 109 (2009), 463–467.
[10] S. Gaspers, M.E. Messinger, R. Nowakowski, P. Prałat, Parallel Cleaning of a Network with

Brushes, Discrete Applied Mathematics 158 (2010), 467–478.
[11] P. Gordinowicz, R. Nowakowski, and P. Prałat, POLISH-or-Let’s play the cleaning game, sub-

mitted to Theoretical Computer Science, 17pp.
[12] L.M. Kirousis, C.H. Papadimitriou, Searching and pebbling, Theoretical Computer Science 47

(1986), 205–218.
[13] C. Merino, The chip-firing game, Discrete Mathematics 302 (2005) 188–210.
[14] M.E. Messinger, R.J. Nowakowski, P. Prałat, Cleaning a Network with Brushes, Theoretical

Computer Science 399 (2008), 191–205.
[15] M.E. Messinger, R. Nowakowski, P. Prałat, Cleaning with Brooms, Graphs and Combinatorics

27 (2011), 251–267.
[16] P. Prałat, Cleaning random d-regular graphs with Brooms, Graphs and Combinatorics 27 (2011),

567–584.
[17] P. Prałat, Cleaning random graphs with brushes, Australasian Journal of Combinatorics 43

(2009), 237–251.
[18] Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, London Mathematics Society

Monographs New Series 26, Oxford University Press, 2002.

10221 Hollymount Drive, Richmond, BC, Canada, V7E 4T5
E-mail address: math@oyeat.com

Department of Mathematics, Ryerson University, Toronto, ON, Canada, M5B 2K3
E-mail address: pralat@ryerson.ca

