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Abstract. Cops & Robber is a classical pursuit-evasion game on undirected graphs, where the
task is to identify the minimum number of cops sufficient to catch the robber. In this paper, we
investigate the changes in problem’s complexity and combinatorial properties with constraining the
following natural game parameters

• Fuel : The number of steps each cop can make;
• Cost : The total sum of steps along edges all cops can make;
• Time: The number of rounds of the game.
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1. Introduction. Cops & Robber game is a discrete variant of the classical Man
and Lion pursuit-evasion problem attributed to Rado by Littlewood in [22]. The game
is played by two players: Cop and Robber on an undirected graph. The cop-player
has a team of cops who attempt to capture the robber. At the beginning of the game
cop-player selects vertices and puts cops on these vertices. Then the robber-player
puts the robber on a vertex. The players take turns starting with the cop-player. At
every move each of the cops can be either moved to an adjacent vertex or kept on
the same vertex. Similarly, the robber-player responds by moving the robber to an
adjacent vertex or by keeping him on the same vertex. The cop-player wins if at some
step of the game he succeeds to catch the robber, that is, to put one of his cops on a
vertex occupied by the robber.

The game, with one cop, was introduced independently by Winkler and
Nowakowski [26] and by Quilliot [29]. Aigner and Fromme [1] initiated the study
of the problem with several cops. Different combinatorial [4, 10, 30] and algorith-
mic [12, 13, 19] aspects of the game were studied intensively. We refer to sur-
veys [3, 14, 20] and the recent monograph [8] for references on different pursuit-evasion
and search games on graphs.

There are two main open problems concerning the Cops & Robber game. The
first open problem is about the upper bound on the number of cops sufficient to
win in any connected graph on n vertices. The famous conjecture, attributed to
Meyniel by Frankl [15], is that for every n-vertex connected graph O(

√
n) cops always

have winning strategy. It was shown by Frankl that the cop number of a graph
is O(n log log n/ log n). Despite many attempts, the best known upper bound of

n

2(1−o(1))(
√

log2 n)
due to Lu and Peng [23] is still quite far from

√
n. See also the

works of Alon and Mehrabian [2]; Frieze et al. [16], and Mehrabian [25] on extensions
of Meyniel’s conjecture. The bounds on the cop number of random graphs were given
by Bollobás et al. [5] and by  Luczak and Pra lat [24]. It has been shown recently by
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Pra lat and Wormald [28] that the Meyniel’s conjecture holds asymptotically almost
surely for random graphs.

The second open problem is the computational complexity of the problem. Gold-
stein and Reingold in [19] conjectured that the game is EXPTIME-complete1 but so
far it is only known to be NP-hard [12]. The complexity of several variants of the Cops
& Robber game are better understood. Goldstein and Reingold [19] proved that the
version of the Cops & Robbers game on directed graphs is EXPTIME-complete. The
version of the game on undirected graphs when the cops and the robber are given their
initial positions is also EXPTIME-complete [19]. The version of the game, where each
cop can make at most φ steps, the version with fuel constraint, is PSPACE-complete
for each φ [13].

In this paper we study the Cops & Robber game when one of the following
parameters is bounded:

• fuel, the number of moves φ each cop can make during the game. In other
words, each cop can pass through at most φ edges;

• cost, the sum σ of the number of steps that all cops can make in total. Thus
the total number of edges passed by all cops is at most σ;

• time, the number of rounds τ of the game.
The version of constraint time was studied by Bonato et al. [6] and Gavenčiak [18].

It was shown in [6] that for every fixed integer τ , and integer k being part of the
input, deciding if at most k cops can win within time τ , is NP-complete. We show
that similar NP-completeness result holds for fixed cost constraint σ and k being part
of the input (Theorem 3.1). For fuel constraint φ = 1 the problem is equivalent to the
minimum dominating set problem, and thus is NP-complete. For φ ≥ 2 the problem
is PSPACE-hard [13]. In this paper, we establish PSPACE-hardness results for the
other two variants of the game, when one of the parameters, either time τ or cost σ is
part of the input (Theorem 3.4). Each of the variants of the Cops & Robber game is
PSPACE-complete, when the corresponding parameter (τ , σ, or φ) does not exceed
some polynomial of the input length (Theorem 3.7). This establish almost complete
classification of the complexity landscape of the game with different constraints on
the resources of the players. We summarize the complexity results in the following
table.

φ ≤ s σ ≤ s τ ≤ s

constant
s = 1, NP-compl. [13]

s ≥ 2, PSPACE-compl. [13]
NP-compl. NP-compl. [6]

polynomial PSPACE-compl. [13] PSPACE-compl. PSPACE-compl.
unbounded PSPACE-hard [13] PSPACE-hard PSPACE-hard

Table 1.1
Complexity classification of the Cops & Robber game with different constraints on resources.

Constant means the corresponding parameter (fuel φ, time τ , and cost σ) is not part of the input.
Polynomial means that the corresponding parameter is bounded by some polynomial of the input
length. The last line of the table corresponds to arbitrary sizes of parameters.

We also present a number of results for new variants of the game played on
binomial random graphs. The variant with Fuel Constraints and the one with Time
Constraints behave similarly from that perspective. We show that the number of cops

1Goldstein and Reingold in [19] call EXPTIME = DTIME(2O(|I|)), where |I| is the input size;
more often this class is denoted by E or ETIME.
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required to catch the robber as a function of the average degree changes in a very
intriguing manner. We get that asymptotically almost surely the logarithm of the cop
number is asymptotic to the zig-zag function that depends on the value of s. (Hence,
in fact, we obtain an infinite family of zig-zags.) The third variant of the game, that
is, the one with Cost Constraints seems to be more challenging to investigate. We
provide both upper and lower bounds for this graph parameter but the shape of the
zig-zag function associated with this variant still remains an open problem.

The remaining part of the paper is organized as follows. In Section 2 we give
basic definitions and observations. We give hardness proofs in Section 3. The results
about Cops & Robber on random graphs are in Section 4.

2. Basic definitions and preliminaries. We consider finite undirected graphs
without loops or multiple edges. The vertex set of a graph G is denoted by V (G)
and its edge set by E(G), or simply by V and E if this does not create confusion. If
U ⊆ V (G), then the subgraph of G induced by U is denoted by G[U ]. For a vertex
v, the set of vertices which are adjacent to v is called the (open) neighborhood of v
and denoted by NG(v). The closed neighborhood of v is the set NG[v] = NG(v)∪{v}.
For Q ⊆ V (G), NG[Q] =

⋃
v∈QNG[v] is the closed neighborhood of Q. The distance

distG(u, v) between a pair of vertices u and v in a connected graph G is the number
of edges in a shortest u, v-path in G. For a positive integer r, let NG(v, s) denote the
set of vertices (“ball”) within distance at most s from v; that is, NG(v, s) = {u ∈
V (G) : distG(u, v) ≤ s}. Whenever there is no ambiguity, we omit the subscripts. All
logarithms with no subscript are natural.

The Cops & Robber game is defined as follows. Let G be a connected graph. The
game is played by two players: the cop-player C and the robber player R, which make
moves alternately. The cop-player C has a team of k cops who attempt to capture
the robber. At the beginning of the game this player selects vertices and put cops on
these vertices. Then R puts the robber on a vertex. The players take turns starting
with C. At every turn each of the cops can be either moved to an adjacent vertex or
kept on the same vertex. Let us note that several cops can occupy the same vertex at
some point of the game. Similarly, R responds by moving the robber to an adjacent
vertex or keeping him on the same vertex. It is said that a cop catches (or captures)
the robber at some round if at that round they occupy the same vertex. The cop-
player wins if one of his cops catches the robber. Player R wins if he can avoid such
a situation. For a graph G, the minimum number k of cops sufficient for C to win on
graph G is called the cop number of G and is denoted by c(G).

We consider the following variants of the game. Let s be a positive integer. In
the first variant of the game, each cop can make at most s moves along edges (have
a bounded “charge” or amount of “fuel”). Notice that a cop needs fuel only to move
from one vertex to another, and even if a cop cannot move to adjacent vertex because
he runs out of fuel, he is still active and the robber cannot step on a vertex occupied
by such cop without being caught. We denote the minimum number of cops with fuel
at most s sufficient to win on G by cφ≤s(G), and we refer to this variant of the game
as Cops & Robber with Fuel Constraints.

Another variant of constraints we study in this paper is the case when during the
whole game the total number of moves (from a vertex to another vertex) of all the
cops is at most s. In other words, if transferring of one cop to adjacent vertex costs
one unit, the total cost of all cop’s movements (or the distance traveled by the cops) is
at most s. We denote the minimum number of cops that can win in these conditions
by cσ≤s(G) and call this game Cops & Robber with Cost Constraints.
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Finally, we consider the game with the number of rounds at most s, that is, the
length of the game is restricted. In other words, the cops are supposed to catch the
robber within time limit s. Let cτ≤s(G) be the minimum number of cops C needed to
win now and the game is called Cops & Robber with Time Constraints.

We consider the decision version of the problem

Cops and Robber with Fuel Constraints
Input: A connected graph G and two positive integers k, s.
Question: Is cφ≤s(G) ≤ k?

The decision versions of Cops and Robber with Cost Constraints and
Cops and Robber with Time Constraints are defined similarly, with the only
difference that we ask if cσ≤s(G) ≤ k and cτ≤s(G) ≤ k, correspondingly.

In some of the proofs, the notion of position will be used. The position of a cop
at a given moment of the game is the vertex of the graph occupied by this cop, and
we define the position of a team of k cops (or position of cops) as a multiset of the
vertices C = (v1, v2, . . . , vk) occupied by the cops. Notice that C is a multiset, since
several cops can occupy one vertex and, as we do not distinguish the cops, it is not
important which cop occupies a vertex. In the case of the game with cost or time
constraints the positions of cops is the pair (C, `), where C is a multiset of the vertices
occupied by the cops and ` is the number of moves along edges which the cops can do
or the total number of rounds left, respectively. For the initial position, ` = s. The
position of the robber is a vertex of the graph occupied by him.

We will use the following observation.
Observation 1. For a connected graph G and a positive integer s,

c(G) ≤ cφ≤s(G) ≤ cτ≤s(G) ≤ cσ≤s(G).

The first two inequalities of Observation 1 follow directly from the definitions of the
numbers c(G), cφ≤s(G), cτ≤s(G) and cσ≤s(G), and the third one follows from the fact
that it always can be assumed that at least one cop is moved at each step (otherwise
the robber can either keep his position or improve it).

Let the s-distance domination number γs(G) be the minimum cardinality of a set
D ⊆ V (G) with the property that every vertex v ∈ V (G) is at distance at most s from
some vertex of D. The relation of the game and domination is given in the following
simple observation.

Observation 2. For any connected graph G,
• cφ≤1(G) = cσ≤1(G) = cτ≤1(G) = γ1(G);
• γs(G) ≤ cφ≤s(G) ≤ cτ≤s(G) ≤ cσ≤s(G), for every positive integer s.

3. Complexity of Cops and Robber with Time and Cost Constraints.
Observation 2 indicates that all variants of the game with constraints are at least NP-
hard. In this section we establish the complexity of Cops and Robber with Time
Constraints and Cops and Robber with Cost Constraints by showing that
they are PSPACE-hard. However, we start with the proof that when s is not a part
of the input, then Cops and Robber with Cost Constraints is NP-complete.

3.1. When cost is not a part of the input. In this subsection we prove that
when the cost is not a part of the input, the version of the problem is NP-complete.

Theorem 3.1. For any positive integer s, the following problem is NP-complete
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Input: A connected graph G and a positive integer k.
Question: Is cσ≤s(G) ≤ k?

Proof. To prove hardness, we reduce the well-known NP-complete Dominating
Set problem [17]. Given a graph G, we construct the graph H as follows: for each
vertex v ∈ V (G), we add a path Pv of length s − 1 with one endpoint in v. All
vertices of Pv except v are new. Observe that for s = 1, H = G. We prove that
G has a dominating set of size k if and only if cσ≤s(H) ≤ k. Let S ⊆ V (G) be a
dominating set of size at most k in G. We put cops on the vertices of S in H. There
is a vertex v ∈ V (G) such that the robber occupies a vertex of the path Pv. Since
S is a dominating set in G, we have that either v ∈ S or v is adjacent to a vertex
u ∈ S. In the second case the cop from u is moved to v at the first step. Now in both
cases the robber occupies a vertex of Pv − v, the vertex v is occupied by a cop, and
the cops can make at least s− 1 moves along edges. It remains to observe that cops
can capture the robber by moving the cop from v toward the other end of Pv. Hence,
k cops have a winning strategy on H and cσ≤s(H) ≤ k. Consider now a winning
strategy of k cops on H. Suppose that (C, s) is the initial position of the cops in
it. Let S = {v ∈ V (G)|C ∩ V (Pv) 6= ∅}. Clearly, |C| ≤ k. We prove that S is a
dominating set in G. Assume that, contrary to this claim, there is a vertex u ∈ V (G)
such that NG[u]∩S = ∅. Let w be the endpoint of Pu different from u. Since vertices
of Pu are not occupied by the cops and there are no cops in the neighborhood of u in
G, all cops are at distance at least s+1 from w. Therefore, the robber can occupy this
vertex at the beginning of the game and stay safely there until the end of the game.
This contradicts the existence of a winning strategy for the cops from the considered
initial position. Hence S is a dominating set of size at most k in G.

To complete the proof, we have to show that for fixed σ, Cops and Robber
with Cost Constraints is in NP. In order to do it, we observe that a winning
strategy of the cops on G can be described as a directed rooted tree of all possible
moves of the robber (where the first move is a choice of the initial position) and
corresponding moves of the cops. Each node of the tree correspond to the current
positions of the cops and robber (the root corresponds only to the initial position of
the cops). The size of this rooted tree is at most O(|V (G)|s) because out-degrees of
its nodes are at most |V (G)| and the height of the tree is at most s. It remains to
observe that such a tree certifies inclusion of our problem in NP, because it may be
checked in polynomial time whether the strategy of cops is winning.

For Cops and Robber with Time Constraints, NP-completeness was proved
in [6], but the reduction described above works for it and Cops and Robber with
Fuel Constraints as well. Using it and the fact that Dominating Set is a W[2]-
complete problem (see the book of Downey and Fellows [11] for an introduction to
parameterized complexity), we derive the following corollary.

Corollary 3.2. For any fixed positive integer s, the Cops and Robber with
Cost Constraints (Time Constraints, Fuel Constraints, respectively) prob-
lem is W[2]-hard parameterized by the number of cops.

Combined with the non-approximability for the dominating set problem [31], the
same reduction implies the following.

Corollary 3.3. For any fixed positive integer s, there is a constant c > 0
such that there is no polynomial time algorithm to approximate cσ≤s(G) (cτ≤s(G),
cφ≤s(G), respectively) within a multiplicative factor of c log n where n = |V (G)|, unless
P = NP .
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3.2. PSPACE-hardness of Cops and Robber with Time and Cost Con-
straints. When σ and τ are a part of the input then Cops and Robber with
Cost Constraints and Cops and Robber with Time Constraints become
PSPACE-hard.

The following theorem is the main result of this subsection.
Theorem 3.4. Cops and Robber with Cost Constraints and Cops and

Robber with Time Constraints are PSPACE-hard.
Proof. We reduce from the PSPACE-complete Quantified Boolean Formula

in Conjunctive Normal Form (QBF) problem. For a set of Boolean variables
x1, x2, . . . , xn and a Boolean formula F = C1 ∧ C2 ∧ · · · ∧ Cm, where Cj is a clause,
the QBF problem asks whether the expression

Φ = Q1x1Q2x2 · · ·QnxnF

is true, where for every i, Qi is either ∀ or ∃. We assume that n ≥ 2 is even, Qi = ∀
for odd i ∈ {1, . . . , n} and Qi = ∃ whenever i is even. It is known that QBF remains
PSPACE-complete with these restrictions [17]. Given a quantified Boolean formula
φ, we construct an instance (G,n, s) of our problem such that Φ is true if and only if
the cop-player can win on G with n cops for s = n+ 1 in both games.

Constructing G.. For every Qixi we introduce a gadget graph Gi:
• Construct vertices xi, xi.
• If Qi = ∀, then we construct vertices yi, yi and edges xiyi, xiyi.
• If Qi = ∃, then we construct a vertex yi and join it with xi, xi by edges.
• Construct a path of length s with endpoints zi, wi and join xi, xi with zi by

edges.

• Construct two paths of length s − 1 with endpoints u
(1)
i , v

(1)
i and u

(2)
i , v

(2)
i

respectively, join u
(1)
i , u

(2)
i with zi by edges.

• Introduce two vertices ri and ri and join them with xi and xi by paths of
length s− 1 respectively.

• Construct two paths of length s − 3 with endpoints p
(1)
i , q

(1)
i and p

(2)
i , q

(2)
i

respectively, join p
(1)
i , p

(2)
i with xi, xi by edges.

For Qi = ∀ and Qi = ∃, we denote the obtained graphs as Gi(∀) and Gi(∃)
respectively (see Fig. 3.1). Let Xi = {xi, xi}, Ui = {u(1)i , u

(2)
i }, Pi = {p(1)i , p

(2)
i },

Yi = {yi, yi} for Gi(∀) and Yi = {yi} for Gi(∃).

Using these gadgets we construct G as follows
• Construct gadget graphs Gi for i ∈ {1, . . . , n}.
• For each i ∈ {2, . . . , n}, join the vertices from the set Yi−1 with all vertices

from Yi.
• For each i ∈ {2, . . . , n}, join the vertices of Ui with all vertices from the sets
Yj for j ∈ {1, . . . , i− 1}.

• For each i ∈ {1, . . . , n − 1}, join the vertices of Pi with all vertices from the
sets Yj for j ∈ {i+ 1, . . . , n}.

• For each even i ∈ {2, . . . , n}, join the vertices from the set Yi−1 with all
vertices from Xi.

• For each odd i ∈ {3, . . . , n − 1}, join the vertices from the set Yi−1 with the
vertex zi.

• Join xn and xn by an edge.
• Add vertices C1, C2, . . . , Cm corresponding to the clauses and join them with

the unique vertex of Yn (recall that Qn = ∃) by edges.
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u
(2)
i

ri

xi

ri

zi

wi

p
(1)
i p

(2)
i

q
(1)
i q

(2)
iu

(1)
i

v
(1)
i v

(2)
i

u
(2)
i

xi

yi

Gi(∀) Gi(∃)

ri

yiyi

xixi

ri

zi

wi

p
(1)
i p

(2)
i

q
(1)
i q

(2)
iu

(1)
i

v
(1)
i v

(2)
i

Fig. 3.1. Graphs Gi(∀) and Gi(∃) for s = 3.

• For i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, the vertex xi is joined with Cj by an
edge if Cj contains the literal xi, and xi is joined with Cj if Cj contains the
literal xi.

Connections between gadgets Gi−1 and Gi is shown in Fig. 3.2 and 3.3, and
construction of G is shown in Fig. 3.4

xi

zi p
(1)
i

u
(2)
iu

(2)
i−1

yi

yi−1 yi−1

zi−1 p
(2)
i

xi

u
(1)
i−1

p
(1)
i−1 p

(2)
i−1

u
(1)
i

xi−1 xi−1

Fig. 3.2. Connections of Gi−1(∀) and Gi(∃).

Now we prove the following two lemmata.
Lemma 3.5. If Φ = true, then n cops have a winning strategy on G in Cops &

Robber with Cost Constraints and Cops & Robber with Time Constraints.
Proof. By Observation 1, it is sufficient for the proof to describe a winning

strategy for the cop-player for Cops & Robber with Cost Constraints. The cops start
by occupying vertices z1, . . . , zn. If the robber occupies a vertex of some (zi, wi)-path
of Gi, then the cop from the vertex zi moves toward the robber in this path. Since
the path has length s, the robber will be captured by this cop. If the robber occupies

a vertex of some (u
(j)
i , v

(j)
i )-path or (xi, ri)-path or (xi, ri)-path of Gi, then the cop

from the vertex zi moves to u
(j)
i or xi or xi respectively and then moves toward the

robber in this path. Since these paths have length s− 1, the robber will be captured.

If the robber occupies a vertex of some (p
(j)
i , q

(j)
i )-path of Gi for i < n, then the cop
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xi−1

zi−1

u
(2)
i−1

yi−1

p
(2)
i−1

xi−1

u
(1)
i−1

p
(1)
i−1

u
(2)
i

yi yi

zi

u
(1)
i

p
(1)
i p

(2)
i

xi xi

Fig. 3.3. Connections of Gi−1(∃) and Gi(∀).

x2

x2

z2 p
(1)
2

u
(1)
2 u

(2)
2

x1x1

p
(1)
1 p

(2)
1

u
(1)
1 u

(2)
1

y2

y1 y1

z1 p
(2)
2

C1 C2

Fig. 3.4. Construction of G for Φ = ∀x1∃x2 (x1 ∨ x2) ∧ (x1 ∨ x2), n = 2, and s = 3.

from the vertex zi+1 moves to xi+1, and then he moves to yi+1. If the robber tries
to move to xi or xi, then he is captured by the cop from zi in one step. Hence, the

robber has to stay on the path. Now the cop from yi+1 moves to p
(j)
i and after that

he moves toward the robber in this path. Since the path has length s − 3, we have
that the robber will be captured. If i = n, then the cop from the vertex zi moves to
xi. If the robber moves to xi, then he is captured by the cop from xi in one step. So,

the robber stays on the path. Now the cop from xi moves to p
(j)
i and after that he

moves toward the robber in this path. Thus we assume that the robber is on a vertex
of some set Yi or in {C1, . . . , Cm}. We consider two cases.

Case 1. The robber occupies a vertex of some set Yi. For each j ∈ {1, . . . , i− 1}, the
cop from zj moves either to xj or to xj . We assume that the choice of xj corresponds
to the value true of the variable xj and the choice of xj corresponds to the value
false of xj . Since φ = true, the variables x1, . . . , xi−1 can be assigned values such
that Qixi . . . QnxnF = true. The cop from the vertex zj moves according to the value
of xj . If xj = true, then he moves to the vertex xj , otherwise he moves to xj . Now
inductively for j ∈ {i, . . . , n}, we assume that the robber occupies a vertex of Yj and
we move the cop from zj according to the following subcases.

a) Qj = ∀. If the robber occupies the vertex yj , then the cop from zj moves to
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xj , and if the robber is on yj , then the cop moves to xj . We again suppose
that a placement of a cop on xj corresponds to the value true of the variable
xj , and a moving a cop to xj corresponds to the value false. Notice that
now the robber choses the value of the variable xj . Now the robber should
make his move:
• If the robber stays in his old position, then he will be captured in one

step by the cop which is either on xj or xj .
• If the robber moves to a vertex of Xj+1, then he will be captured in one

step by the cop from zj+1 in Gj+1(∃).
• If the robber moves to a vertex of Yj−1, then again he will be captured

in one step by the cop which is either on xj−1 or xj−1 in Gj−1(∃).
• If the robber moves to a vertex u

(1)
t or u

(2)
t for t > j, then he will be

captured in one step by the cop from zt.

• If the robber moves to a vertex p
(1)
t or p

(2)
t for t < j, then he will be

captured in one step by the cop from xt or xt.
Hence he should move either to a vertex of Yj+1 or to one of the vertices
C1, . . . , Cm if j = n to avoid the capture.

b) Qj = ∃. Then the robber occupies yj . The cop from zj moves either to xj
or to xj . The vertex is chosen in such a way that it corresponds to the value
of the variable xj for which (and for already assigned values of the variables
x1, . . . , xj−1) Qj+1xj+1 . . . QnxnF = true. Then similarly to the Subcase a),
• If the robber stays in his old position, then he will be captured in one

step by the cop which is either on xj or xj .
• If the robber moves to a vertex of Xj unoccupied by the cops, then he

will be captured in one step either by the cop from zj+1 in Gj+1(∀) if
j < n or by the cop from Xj if j = n.

• If the robber moves to a vertex of Yj−1, then again he will be captured
in one step by the cop which is either on xj or xj in Gj(∃).

• If the robber moves to a vertex u
(1)
t or u

(2)
t for t > j, then he will be

captured in one step by the cop from zt.

• If the robber moves to a vertex p
(1)
t or p

(2)
t for t < j, then he will be

captured in one step by the cop from xt or xt.
Hence, the robber is either captured by the next step or moves to a vertex of
Yj+1 or to one of the vertices C1, . . . , Cm if j = n.

Finally, the robber is either captured or occupies some vertex Ct. Notice that if the
robber is not captured yet, then the cops made exactly n = s− 1 moves along edges.
Observe also, that the cops have chosen the vertices of the sets X1, . . . , Xn such that
F = true for the corresponding values of boolean variables. Hence there is a cop on
a vertex adjacent with Ct and he captures the robber by the next move.

Case 2. The robber occupies some vertex Cj in the beginning of the game. For each
i ∈ {1, . . . , n} such that Cj contains either xi or xi, the cop from zi moves either to
xi or to xi according to the inclusion of the literal. If xn, xn are not included in Cj ,
then additionally the cop from zn moves to xn. Clearly, the robber should either stay
on Cj or move to yn. In the first case he is captured by one of the cops on xi, xi, and
he is captured by the cop from xn or xn in the second case.

To complete the proof of PSPACE-hardness, it remains to prove the following
lemma.
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Lemma 3.6. If Φ = false, then the robber has a winning strategy against n
cops on G in Cops & Robber with Cost Constraints and Cops & Robber with Time
Constraints.

Proof. By Observation 1, now it is sufficient for the proof, to describe a winning
strategy for the robber-player for Cops & Robber with Time Constraints. Assume
that the cops have chosen their initial positions. If there is a path (zi, wi)-path in
some Gi such that all vertices of the path are unoccupied by the cops, then we place
the robber on wi. Since there are no cops at distance at least s + 1 from wi, the
winning strategy for the robber is trivial — he should stay on wi. Suppose now that
for each (zi, wi)-path, there is a cop on one of the vertices of the path. We have n
cops. Hence exactly one cop occupies one vertex of each path. Moreover, this cop
should occupy zi if the cops do not want the robber to win by a trivial strategy, since

otherwise the vertices v
(1)
i , v

(2)
i , ri, ri have no cops at distance at least s+ 1, and the

robber can safely stay on one of these vertices. Denote this cop by Pi. The robber is
placed on a vertex of Y1. The choice of the vertex and further moves of the robber
are described inductively for i ∈ {1, . . . , n}. Suppose that for each i ≤ j ≤ n, the cop
Pj is on the vertex zj , and each 1 ≤ j < i, Pj is either on xi or xi. Assume also that
values of the variables x1, . . . , xi−1 are already defined and Qixi . . . Qnxn = false for
this assignment.

a) Qi = ∀. Since Qixi . . . Qnxn = false, there is a value of xi for which
Qi+1xi+1 . . . Qnxn = false. If this value is true, then the robber is placed on
yi and he is placed on yi otherwise. Observe, that the value of xi is chosen
by the robber-player. In the following cases the robber has a straightforward
winning strategy.
• One of the cops Pj for 1 ≤ j < i leaves the vertex of Xj . If j 6= i− 1 or
j = i−1 and the cop from zi does not move simultaneously to Xi−1, then

the robber chooses one of the vertices p
(t)
j not occupied by Pj , moves to

p
(t)
j , and then moves by his subsequent moves to q

(t)
j . Observe that in

this case the cops already made at least two moves and any cop have

to make at least two further moves to reach the vertex p
(t)
j . Since this

(p
(t)
j , q

(t)
j )-path is not occupied by the cops when Pj leaves Xj , this is a

winning strategy for the robber.
• One of the cops Pj for i < j ≤ n leaves the vertex zj . Then the robber

chooses one of the vertices u
(t)
j not occupied by Pj and moves to u

(t)
j , and

then moves by his subsequent moves to v
(t)
j . Since this (u

(t)
j , v

(t)
j )-path

is not occupied by the cops when Pj leaves zj , this is a winning strategy
for the robber.

• The cop Pi moves to the vertex of Xi not adjacent with the robber’s
position. Then the robber moves to the vertex of Xi adjacent with his
current position, and then moves by his subsequent moves to either ri
or ri and wins.

• The cop Pi moves from zi to a vertex of Xi−1 but the cop from Xi−1
does not go to zi by the same step. Then the robber again moves to the
vertex of Xi adjacent with his current position, and then moves by his
subsequent moves to either ri or ri and wins.

The cop-player has the following remaining possibilities.
• Exactly two cops Pi−1 and Pi move: the cop Pi−1 moves from his current

position in Xi−1 to zi and the cop Pi moves to Xi−1. We call a move
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of this type switching, and we assume that these cops exchange their
names Pi−1 and Pi after this move. In this case the robber stays in his
current position.

• Exactly one cop Pi moves to the vertex of Xi adjacent with the robber’s
position. Then the robber moves to a vertex of Yi+1 or to some vertex
of {C1, . . . , Cm} if i = n.

b) Qj = ∃. The robber is placed on yi. In the following cases the robber wins
directly.
• One of the cops Pj for 1 ≤ j < i leaves the vertex of Xj . Then the robber

chooses one of the vertices p
(t)
j not occupied by Pj , moves to p

(t)
j , and

then moves by his subsequent moves to q
(t)
j . Since this (p

(t)
j , q

(t)
j )-path is

not occupied by the cops when Pj leaves Xj , this is a winning strategy
for the robber.

• One of the cops Pj for i < j ≤ n leaves the vertex zj . Then the robber

chooses one of the vertices u
(t)
j not occupied by Pj , moves to u

(t)
j , and

then moves by his subsequent moves to v
(t)
j . Since this (u

(t)
j , v

(t)
j )-path

is not occupied by the cops when Pj leaves zj , this is a winning strategy
for the robber.

• The cop Pi moves from zi to either u
(1)
i or u

(2)
i . Then the robber moves

to the vertex of Xi adjacent to his current position, and then moves by
his subsequent moves to either ri or ri.

Only one case remains: exactly one cop Pi moves to the vertex of Xi. If
he moves to xi, then we let xi = true and xi = false otherwise. Observe
that now the cop-player chooses the value of xi. Then the robber moves to a
vertex of Yi+1 or to some vertex of {C1, . . . , Cm} if i = n.

It remains to define the strategy for the case when the robber moves to a vertex of
{C1, . . . , Cm}. Now we can assume that the variables x1, . . . , xn have values for which
F = false. Hence, there is a clause Cj = false. Observe that the total number of
steps is at least n = s − 1. Moreover, if the cops made at least one switching step,
then the total number of steps is s and the game is over. It follows that by each step
exactly one cop was moved and they occupy vertices xi, xi according to the values of
the corresponding variables. Therefore, the cops cannot move by the last step to Cj .
The robber moves to this vertex and stays there.

Now the proof of the theorem follows from Lemmata 3.5 and 3.6.

3.3. Inclusion in PSPACE. Theorem 3.4 establishes only PSPACE-hardness of
Cops and Robber with Cost Constraints and Cops and Robber with Time
Constraints. In what follows, we prove that these problems are in PSPACE when
the parameter s bounded by some polynomial of the input size or if it is assumed that
these integers are encoded in unary.

Theorem 3.7. For every integers s, k ≥ 1 and an n-vertex graph G, it is possible
to decide whether cσ≤s(G) ≤ k (cτ≤s(G) ≤ k respectively) by making use of space
O(s · nO(1)).

Proof. The proof is constructive. We describe a recursive algorithm which solves
Cops and Robber with Cost Constraints. Note that we can consider only
strategies of the cop-player such that at least one cop is moved to an adjacent vertex.
Otherwise, if all cops are staying in old positions, the robber can only improve his
position.

Our algorithm uses a recursive procedure W (P, u), which for a position of the
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cops P = (C, l), C = (v1, . . . , vk) such that l ≤ s, and a vertex u ∈ V (G), returns
true if k cops can win starting from the position P against the robber which starts
from the vertex u, and the procedure returns false otherwise. Clearly, k cops can
capture the robber on G if and only if there is an initial position P0 such that for any
u ∈ V (G), W (P0, u) = true for l = s.

If l = 0, then W (P, u) = true if and only if u = vi for some 1 ≤ i ≤ k. Suppose
that l > 0. Then W (P, u) = true in the following cases:

• u = vi for some 1 ≤ i ≤ k,
• u ∈ NG(vi) for some 1 ≤ i ≤ k,
• there is a position P ′ = (C ′, l′), where C ′ = (v′1, . . . , v

′
k) and l′ < l, such

that the cops can go from P to P ′ in one step in such a way that exactly
l − l′ cops move to their new positions along edges, and for any u′ ∈ NG[u],
W (P ′, u′) = true.

Since all positions can be listed (without storing them) by using polynomial space,
the number of possible moves of the robber is at most n, and the depth of the recursion
is at most s, the algorithm uses space O(s · nO(1)).

The algorithm for Cops and Robber with Time Constraints is almost the
same. The only difference is that for l > 0, W (P, u) = true if and only if

• u = vi for some 1 ≤ i ≤ k, or
• u ∈ NG(vi), or
• there is a position P ′ = (C ′, l−1), where C ′ = (v′1, . . . , v

′
k), such that the cops

can go from P to P ′ in one step, and for any u′ ∈ NG[u], W (P ′, u′) = true.

4. Random Graphs. In this section, we present asymptotic results for the
game of Cops & Robber played on a binomial random graph G(n, p). The section
is organized as follows. In Subsection 4.1 we define the probability space we are
interested in, and briefly describe results for the original game played on a random
graphs. In Subsection 4.2 we describe our main results for the the variant with Fuel
Constraints as well as the one with Time Constraints. Upper and lower bounds are
investigated separately in Subsections 4.3 and 4.4, respectively. The proofs are based
on techniques and ideas from [24, 28]. Finally, in Subsection 4.5 we discuss the third
variant of the game, namely the one with Cost Constraints, in the context of random
graphs. A non-trivial upper bound is provided for this case but the behavior of this
variant of the game remains to be investigated.

4.1. Definitions and the original game. Let us recall the classic model of
random graphs that we study in this paper. The binomial random graph G(n, p) is
defined as a random graph with vertex set [n] = {1, 2, . . . , n} in which a pair of vertices
appears as an edge with probability p, independently for each such a pair. As typical
in random graph theory, we shall consider only asymptotic properties of G(n, p) as
n→∞, where p = p(n) may and usually does depend on n. We say that an event in
a probability space holds asymptotically almost surely (a.a.s.) if its probability tends
to one as n goes to infinity.

Let us first briefly describe some known results on the cop number of G(n, p).
Bonato, Hahn, and Wang [7] started investigating such games in G(n, p) random
graphs. Bonato, Wang, and the third author of this paper [9], generalized these
result to sparser random graphs and their generalizations used to model complex
networks with a power-law degree distribution. From their results it follows that if
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2 log n/
√
n ≤ p < 1− ε for some ε > 0, then a.a.s.

c(G(n, p)) = Θ(log n/p).

A simple argument using dominating sets shows that c(G(n, p)) = o(log n) a.a.s. if
p tends to 1 as n goes to infinity (see [27] for this and stronger results). Recently,
Bollobás, Kun and Leader [5] showed that for p(n) ≥ 2.1 log n/n, we get that a.a.s.

1

(np)2
n(log log(np)−9)/(2 log log(np)) ≤ c(G(n, p)) ≤ 160000

√
n log n .

From these results, if np ≥ 2.1 log n and either np = no(1) or np = n1/2+o(1), then
a.a.s. c(G(n, p)) = n1/2+o(1). Somewhat surprisingly, between these values it was
shown by  Luczak and the third author of this paper [24] that the cop number has
more complicated behavior. It follows that a.a.s. logn c(G(n, nx−1)) is asymptotic to
the function g(x) shown in Figure 4.1(a).

(a) g(x) (b) h3(x) (b) h5(x)

Fig. 4.1. The ‘zigzag’ functions.

Below we precisely state the result.
Theorem 4.1 ([24]). Let 0 < α < 1, let j ≥ 1 be integer, and let d = d(n) =

(n− 1)p = nα+o(1).
1. If 1

2j+1 < α < 1
2j , then a.a.s.

c(G(n, p)) = Θ(dj) .

2. If 1
2j < α < 1

2j−1 , then a.a.s.

n

dj
= O

(
c(G(n, p))

)
= O

( n
dj

log n
)
.

3. If α = 1/(2j) or α = 1/(2j + 1), then a.a.s. c(G(n, p)) = dj+o(1).
In particular, it follows from [5, 24] that the cop number is a.a.s. of order

O(
√
n log n), provided that d ≥ 2.1 log n. Recently, Wormald and the third author of

this paper removed unnecessary log n factor and extended the result to sparser graphs
and random d-regular graphs, proving Meyniel’s conjecture for random graphs [28].

4.2. Main results for the two variants of the game. In this subsection,
we describe the behavior of the cop number with two constraints we consider in this
paper: the variant with Fuel Constraints as well as the one with Time Constraints.
From the point of view of random graphs, asymptotic behaviors of cφ≤s(G(n, p)) and
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cτ≤s(G(n, p)) are essentially the same. All our proofs work for both variants of the
game, and we state result for the Fuel Constraints variant only. The variant with Cost
Constraints is discussed in Subsection 4.5. This variant is still not fully investigated.

It follows from Observation 1 that for any s ∈ N and any graph G we have that
cτ≤s(G) ≥ cφ≤s(G) ≥ c(G). However, it turns out that introducing constraints in the
random graph case does not affect substantially the cop number, provided that the
graph is dense enough; that is, the average degree is at least n1/(2s). With a log n
times more cops (or sometimes just O(1) times more) we can catch the robber in a
few steps only, which provides an upper bound of cτ≤s(G). On the other hand, for
sparse random graphs the distance s-domination number γs(G(n, p)) is a.a.s. large
which implies that the constrained cop number has to go up. We will show that a.a.s.
cτ≤s(G) (and thus cφ≤s(G) as well) has the same order as this obvious lower bound.

In particular for s = 3, 5, it follows that a.a.s. logn cτ≤s(G(n, nx−1)) (and
logn cφ≤s(G(n, nx−1)) as well) is asymptotic to the function hs(x) shown in Fig-
ure 4.1(b) and (c), respectively. Here is a precise result for any s ∈ N.

Theorem 4.2. Let 0 < α < 1, let s ≥ 1 be integer, and let d = d(n) = (n−1)p =
nα+o(1).

(i) If α < 1
2s−1 , then a.a.s.

cφ≤s(G(n, p)) = Θ
( n
ds

log n
)
.

(ii) If 1
2j+1 < α < 1

2j for some integer j < s, then a.a.s.

cφ≤s(G(n, p)) = Θ(dj) .

(iii) If 1
2j < α < 1

2j−1 for some integer j < s, then a.a.s.

n

dj
= O

(
cφ≤s(G(n, p))

)
= O

( n
dj

log n
)
.

(iv) If α = 1/(2j) or α = 1/(2j + 1) for some integer j < s, then a.a.s.
cφ≤s(G(n, p)) = dj+o(1).

Exactly the same statement holds for cτ≤s(G(n, p)).

4.3. Upper bound. In this section, we provide an upper bound for the main
theorem of this section, Theorem 4.2. The result is actually slightly stronger than
the one stated in the main theorem. First of all, we prove it for all random graphs
but quite sparse ones (the average degree at least log3 n) whereas the main theorem
focuses on dense graphs (the average degree nα+o(1) for some α ∈ (0, 1)). Second of
all, we allow s = s(n) to be a function of n whereas the main theorem assumes this
to be arbitrarily large but fixed constant.

We will use the following expansion-type property of random graphs that is proved
in [28].

Lemma 4.3 ([28]). Suppose that d = p(n−1) ≥ log3 n. Let G = (V,E) ∈ G(n, p).
Then the following property holds a.a.s. Let Q ⊆ V be any set of q = |Q| vertices,
and let s = s(n) ∈ N. Then∣∣∣∣∣∣

⋃
v∈Q

N(v, s)

∣∣∣∣∣∣ ≥ 1

3
min{qds, n}.

With this tool in hand we are ready to prove the following theorem.
Theorem 4.4. Let s = s(n) ≥ 1 be integer and let d = d(n) = (n− 1)p.
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(i) If n1/(2j+1) ≤ d ≤ (n log n)1/(2j) for some integer j < s, then a.a.s.

cφ≤s(G(n, p)) = O(djβ),

where β = max{n log n/d2j+1, 1} = O(log n).
(ii) If (n log n)1/(2j+2) ≤ d ≤ n1/(2j+1) for some integer j < s, then a.a.s.

cφ≤s(G(n, p)) = O
( n

dj+1
log n

)
.

(iii) If d ≤ (n log n)1/(2s), then a.a.s.

cφ≤s(G(n, p)) = O
( n
ds

log n
)
.

Before we start the proof, let us mention that (i) actually works for any value of
d. This will provide a non-trivial upper bound for the third variant of the game we
discuss in Subsection 4.5. Here, we put restriction on d to focus on the range that
gives the best upper bound. Note that when d = n1/(2j+1) for some j < s, then both
(i) and (ii) give the same bound of O(nj/(2j+1) log n). Similarly, if d = (n log n)1/(2j)

for some j < s, then both (i) and (ii) give a bound of O(
√
n log n).

Proof. We show that the upper bounds hold for an arbitrary graph G possessing
the properties stated in Lemma 4.3; then that lemma implies the theorem.

We start with (i). The team of cops is determined by independently choosing
each vertex of v ∈ V to be occupied by a cop with probability Cdjβ/n, where C is a
constant to be determined soon. The total number of cops is (1 + o(1))Cdjβ a.a.s.

The robber appears at some vertex v ∈ V . We will show below that a.a.s. for
each vertex v ∈ V it is possible to assign distinct cops to all vertices u in N(v, j) such
that a cop assigned to u is within distance (j + 1) of u. (Note that here, a.a.s. refers
to the randomness in distributing the cops; the graph G is fixed.) If this can be done,
then after the robber appears these cops can begin moving straight to their assigned
destinations in N(v, j). Since the first move belongs to the cops, they have j + 1 ≤ s
steps, after which the robber must still be in N(v, j), which is fully occupied by cops.
He is caught and the game ends after at most s rounds.

In order to show that the assignments we require exist a.a.s. for every vertex
v, we show that the random placement of cops a.a.s. satisfies the Hall condition for
matchings in bipartite graphs. Set

q0 = max{q : qdj+1 < n}.

Fix any vertex v ∈ V and let Q ⊆ N(v, j) with |Q| = q ≤ q0. It follows by applying
the condition in Lemma 4.3 to bound the size of

⋃
u∈QN(u, j + 1), that the number

of cops occupying this set of vertices can be stochastically bounded from below by the
binomial random variable Bin(bqdj+1/3c, Cdjβ/n) with expected value asymptotic to
C
3 qd

2j+1β/n ≥ C
3 q log n. We next use a consequence of Chernoff’s bound (see e.g. [21,

p. 27 Cor. 2.3]), that

P(|X − EX| ≥ εEX)) ≤ 2 exp

(
−ε

2EX
3

)
for 0 < ε < 3/2. This implies that the probability that there are fewer than q cops in
this set of vertices is less than exp(−4q log n) when C is a sufficiently large constant.
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Hence, the probability that the necessary condition in the statement of Hall’s theorem
fails for at least one set Q with |Q| ≤ q0 is at most

q0∑
q=1

(
|N(v, j)|

q

)
exp(−4q log n) ≤

q0∑
q=1

nq exp(−4q log n) = o(n−1).

Let Q ⊆ N(v, j) with q0 < |Q| = q ≤ |N(v, j)| ≤ 2dj . (The last inequality is a
rough estimation. In fact, it follows from (4.1) below that |N(v, j)| = (1+o(1))dj .) It
follows from Lemma 4.3 that the size of

⋃
u∈QN(u, j+1) is at least n/3, so we expect

at least C
3 d

j cops in this set. Using Chernoff’s bound again, we get that the number
of cops is at least 2dj ≥ |N(v, j)| ≥ |Q| with probability at least 1 − exp(−4dj), by
taking the constant C to be large enough. Since

|N(v,j)|∑
q=q0+1

(
|N(v, j)|

q

)
exp(−4dj) ≤ 2dj22d

j

exp(−4dj) = o(n−1),

the necessary condition in Hall’s theorem holds with probability 1 − o(n−1). Hence,
the assignment can be done with at least this probability, for each possible starting
vertex v ∈ V . It follows that the strategy is a winning one for the cops a.a.s. This
finishes the proof of (i).

One can adjust the proof of (i) to get (ii). Note that in this case for any set
Q ⊆ N(v, j), it follows from Lemma 4.3 that the size of

⋃
u∈QN(u, j + 1) is at least

|Q|dj+1/6, since |Q| ≤ 2dj and so |Q|dj+1 ≤ 2n. Therefore, the ‘bottleneck’ when
checking the Hall’s condition is not for sets of large cardinality anymore, this time
we need to adjust the number of cops so that the condition holds for small sets. The
team of cops is determined by independently choosing each vertex of v ∈ V to be
occupied by a cop with probability C log n/dj+1, where C is a large enough constant.
The expected number of cops in

⋃
u∈QN(u, j + 1) is at least C|Q| log n/6 and we are

fine.

Finally, let us investigate (iii). The game has to end after s steps (at least in
the case of the game with time constraints). Hence, we need to restrict ourselves
and search for cops in a ball of radius s. Similarly as before, the team of cops is
determined by independently choosing each vertex of v ∈ V to be occupied by a cop
with probability C log n/ds, where, as usual, C is a large enough constant. For any
set Q ⊆ N(v, s− 1), we expect |Q| log n/3 cops in

⋃
u∈QN(u, s) and the proof works

exactly as before.

4.4. Lower bound. In this section, we provide a lower bound of the cop number
for the main theorem of this section, Theorem 4.2. In order to do it we need another
expansion-type property of random graphs. Lemma 4.3 provides a lower bound for
the size of a union of neighbourhoods; this time we are interested in finding an upper
bound for it. In order to prove the following lemma, an adjustment of the proof
from [28] is needed.

Lemma 4.5. Suppose that d = p(n−1) ≥ log3 n. Let G = (V,E) ∈ G(n, p). Then
the following property holds a.a.s. Let Q ⊆ V be any set of q = |Q| vertices, and let
s = s(n) ∈ N be such that qds ≤ 1

2n log n. Then∣∣∣∣∣∣
⋃
v∈Q

N(v, s)

∣∣∣∣∣∣ < n.
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In particular, a.a.s. γs(G(n, p)) > n logn
2ds .

Proof. Let Q ⊆ V , q = |Q|, and consider the random variable X = X(Q) =
|N [Q]|. We will bound X from below in a stochastic sense. There are two things that
need to be estimated: the expected value of X, and the concentration of X around
its expectation.

It is clear that

EX = n−
(

1− d

n− 1

)q
(n− q)

= n− exp

(
−dq
n

(1 +O(d/n))

)
(n− q)

= dq(1 +O(log−1 n))

provided dq ≤ n/ log n. It follows from Chernoff’s bound that the expected number
of sets Q that have

∣∣|N [Q]| − d|Q|
∣∣ > εd|Q| and |Q| ≤ n/(d log n) is, for ε = 2/log n,

at most ∑
q≥1

nq exp

(
−ε

2q log3 n

3

)
=
∑
q≥1

exp

(
q log n− 4

3
q log n

)
= o(1).

So a.a.s. if |Q| ≤ n/(d log n) then |N [Q]| = d|Q|(1 +O(1/ log n)) where the bound in
O() is uniform. We may assume this statement holds.

Given this assumption, we have good bounds on the ratios of the cardinalities of
N [Q], N [N [Q]] =

⋃
v∈QN(v, 2), and so on. We consider this up to the s’th iterated

neighborhood provided qds ≤ n/ log n and thus s = O(log n/ log log n). Then the
cumulative multiplicative error term is (1 +O(log−1 n))s = (1 + o(1)), that is,∣∣∣∣∣∣

⋃
v∈Q

N(v, s)

∣∣∣∣∣∣ = (1 + o(1))qds (4.1)

for all q and s such that qds ≤ n/ log n. This establishes the property in this case.
Suppose now that qds = cn log n with 1/ log2 n < c = c(n) ≤ 1/2. Using (4.1), we

have that U =
⋃
v∈QN(v, s−1) has cardinality (1+o(1))qds−1 = O(n/ log2 n) = o(n).

Now V \N [U ] has expected size

e−c lognn(1 + o(1)) ≥
√
n(1 + o(1)),

since c ≤ 1/2. Chernoff’s bound can be used again in the same way as before to show
that with high probability |V \ N [U ]| is concentrated near its expected value, and
hence that a.a.s. |V \N [U ]| > 1

2

√
n for all q and s in this case. Thus the statement

holds also in this case.
Lemma 4.5 implies easily the following general lower bound that is tight for sparse

graphs with the expected degree d ≤ n1/(2s−1).
Corollary 4.6. Suppose that d = p(n − 1) ≥ log3 n. Let G = (V,E) ∈ G(n, p)

and s = s(n) ∈ N. Then a.a.s.

cφ≤s(G) = Ω

(
n log n

ds

)
.
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Proof. Suppose that q = n logn
2ds cops try to catch the robber. It follows from

Lemma 4.5 that a.a.s. for every starting configuration for cops, there is a vertex that
is at the distance at least s+ 1 from any of the cops. The robber starts the game on
this vertex and remains safe to the end of the game. In short, we use the fact that
cφ≤s(G) ≥ γs(G).

For denser graphs (d > n1/(2s−1)), a lower bound for the classic game is useful,
since cφ≤s(G) ≥ c(G). It turns out that these bounds are tight. In other words,
introducing more constraints on cops is not affecting substantially the cop number.
The following results have been shown in [24] for the classic cop number, which provide
a lower bounds for our variants of the game.

Theorem 4.7 ([24]). Let 1
2j+1 < α < 1

2j for some natural j ≥ 1, c = c(j, α) =
3

1−2jα and d = d(n) = (n− 1)p = nα+o(1). Let s = s(n) ∈ N. Then a.a.s.

cφ≤s(G(n, p)) ≥ c(G(n, p)) ≥
[ d

3cj

]j
.

Theorem 4.8 ([24]). Let 1
2j < α < 1

2j−1 for some natural number j ≥ 2,

c̄ = c̄(α) = 3
1−(2j−1)α and d = d(n) = (n − 1)p = nα+o(1). Let s = s(n) ∈ N. Then

a.a.s.

cφ≤s(G(n, p)) ≥ c(G(n, p)) ≥
[ d

3c̄j

]j n

c̄d2j
.

Note that in the above result the case when np = n1/k+o(1), for some natural k
is skipped. It was done for technical reasons. However, it was verified that, up to a
factor of logO(1) n, the result extends to the case np = n1/k+o(1) as well.

Finally, as we already mentioned, very dense random graphs were investigated
in [9, 27]. We know that if np = nα+o(1) with α ∈ [1/2, 1], then a.a.s. c(G(n, p)) =
n1−α+o(1). Specifically, to get an upper bound it was proved that a.a.s. there is a
dominating set of cardinality n1−α+o(1). If this is the case, then one move is enough
to catch the robber. We have that a.a.s.

cσ≤s(G(n, nα−1)) = n1−α+o(1)

for any s ≥ 1 and 1/2 ≤ α ≤ 1. This implies that the same statement holds for
cφ≤s(G(n, nα−1)) and cτ ≤ s(G(n, nα−1)), which gives us the whole picture for a wide
range of d ≥ log3 n.

4.5. Cops & Robber with Cost Constraints. In this section, we discuss the
last variant of the game, the one with Cost Constraints. From the perspective of
random graphs, this variant seems to be the most challenging one. When the total
distance is bounded by nη+o(1) for some η < 1/2, our upper bound sometimes does
not math the lower bound of the original cop number. We still do not know the shape
of the function associated with this variant of the game.

Let us note that the proof of Theorem 4.4(i) provides an upper bound for the game
with cost constraints as well. We restricted the range of d before for the best outcome
but, as we already mentioned, the statement holds for any value of d. Let j ∈ N. For
d ≥ (n log n)1/(2j+1), the strategy requiring O(dj) cops was presented; each cop made
at most (j + 1) moves for a total distance traveled by cops of (1 + o(1))(j + 1)dj . For
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d ≤ (n log n)1/(2j+1), more cops were needed (O
(

n
dj+1 log n

)
) but only a small fraction

of them were actually moving ((1 + o(1))dj). Again, each ‘active’ cop moved exactly
(j+ 1) times for a total distance of (1 +o(1))(j+ 1)dj . We get the following corollary.

Corollary 4.9. Let j ≥ 1 be integer, let d = d(n) = (n − 1)p, and consider a
game played on G(n, p). Then, a.a.s. cops have a winning strategy requiring:

(i) O(djβ) cops, where β = max{n log n/d2j+1, 1},
(ii) (1 + o(1))(j + 1)dj moves, in total.

In particular, if s ≥ (1 + ε)(j + 1)dj for some j ∈ N and ε > 0, then a.a.s.
cσ≤s(G(n, p)) = O(djβ), where β = max{n log n/d2j+1, 1}.

Upper bounds corresponding to j = 1, 2, 3 as well as the one corresponding to the
strategy based on the domination number that works for any s ≥ 1 are presented in
Figure 4.2(a). (Although it has nothing to do with j from the previous corollary, let
us say that this universal bound corresponds to j = 0.)

(a) strategies for j ∈ {0, 1, 2, 3} (b) l 2
5
(x) (c) l 2

5
(x) and the lower bound

Fig. 4.2. More ‘zigzag’ functions.

Note that if the total distance is bounded by nη+o(1) for some η ≥ 1/2, the
additional restriction does not prevent us from choosing the optimal value of j and
we get exactly the same zigzag as before (see Figure 4.1(a)). The upper bound matches
the lower bound for the original game. Unfortunately, it is not the case when η < 1/2.
This time we need to choose the largest value of j such that s ≥ (1+ε)(j+1)dj for some
ε > 0. If no such j exists, we need to use the universal strategy (j = 0). The function
associated with an upper bound is not continuous anymore and bounds do not match
for many densities. However, it would not be surprising if this is the behavior of the
cop number for this variant of the game. This remains an open problem.

In order to illustrate the behavior of the upper bound, we consider the following
example: suppose that s = nη+o(1) with η = 2

5 and the graph has average degree of

d = nx+o(1) for some x ∈ (0, 1). To get the best outcome, we choose the largest value
of j such that j < η

x ; that is j = d ηxe − 1. In particular, for x ≥ 2
5 we take j = 0 to

get a bound of n1−x+o(1). For 1
5 ≤ x < 2

5 , we select j = 1 but a bound changes at

x = 1
3 : we have nx+o(1) for 1

3 ≤ x ≤
2
5 and n1−2x+o(1) for 1

5 ≤ x <
1
3 . This is the only

‘lower peak’ we get for this value of η. If 2
5(k+1) ≤ x <

2
5k , then we take j = k and we

get a bound of n1−(k+1)x+o(1). The function l 2
5
(x) associated with the case of η = 2

5

is presented in Figure 4.2(b). The function is repeated in Figure 4.2(c) together with
the lower bound.

For η ∈ (0, 12 ), the shape of lη(x) is similar. If η > 2
5 we will see more ‘lower

peaks’ (but still a finite number); however, there will be none of them for η ≤ 1
3 . For

a sparse graphs (x small enough), lη(x) = 1− d ηxex and so limx→0 lη(x) = 1− η.
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