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Abstract. Research on self-organizing networks, especially in the con-
text of the Web graph, holds great promise to understand the complexity
that underlies many social systems. We argue that models of social net-
work structure should begin to consider how structure arises from the
“content” of networks, a term we use to describe attributes of network
actors that are independent of their structural position, such as skill,
intelligence, or wealth. We propose a rank model of how content (oper-
ationalized as attribute rank relative to other individuals) may change
amongst agents over time within a stochastic system. We then propose
a model of network self-organization based on this rank model. Finally,
we demonstrate how one may make inferences about the content of net-
works when attributes are unobserved, but network structures are readily
measured. This approach holds promise to enhance our study of social
interactions within the Web graph and in complex social networks in
general.

1. Why network content matters

Research on the Web graph has been very influential in social science research
regarding the structure and function of complex social networks. While the struc-
ture and emergence of networks has been a long-standing theme in disciplines
such as sociology [1][2], political science [3][4], and economics [5], coupling the-
oretical models with rigorous models of network self-organization (e.g., [6] and
[7]) is still an emerging area of research. Indeed, research on complex networks,
especially in the context of the Web graph, has broad applicability in the so-
cial sciences and can help to inform methods to unpack the complexity that
characterizes many social systems.

At the same time, the social sciences can also contribute to modeling work
in mathematics and computer science, since it offers concrete theories about the
factors that drive network relationships. Thus, social science theory can help to
discipline researchers’ focus on particular models that are likely to be more real-
istic in particular contexts. In research on the Web graph it is important to focus
on social drivers of network structure since the Web is, after all, a self-organizing
network created and manipulated by human beings. Interactions within the Web



graph are both a direct reflection of human behavior (e.g., when organizations
decide to reference one another due to shared interests or resources), but also
hold promise as indicators for latent forms of socially-relevant relations such as
trust or agreement [8].

In this paper we argue that modeling work on social networks should take
seriously the role of network content—meaning the inherent attributes of network
actors [9]—in driving network self-organization. Some research has begun to do
this by asking, for example, how network structures are influenced by the fitness
of actors [10], strategies [11], or the spatial positioning of agents [12]. These types
of “content” models of network structure are important supplements to classical
modeling approaches that emphasize the importance of structural drivers such
as node degree or other measures of centrality. This is because many social
science theories are ultimately concerned with attributes of individual actors—
why are some powerful and others marginalized, why do political organizations
behave the way they do, and how are behaviors, norms, or beliefs learned from
others within a network. Thus, to understand complex social networks one must
consider structure, but also how structure is dependent upon, and co-evolves
with, network content. This will allow researchers to move towards coherent
theories of emergent behaviors within social networks.

We contribute to this endeavor in two ways. First, this paper posits a simple,
mathematically tractable, yet reasonable model of network self-organization that
accounts for the ways in which network content drives network structure. This
is a contribution in of itself, and builds heavily upon earlier modeling work in
this area by  Luczak, Pra lat, Wormald (e.g., [13], [14], [15], [16]) and especially
by Pra lat and Janssen (e.g., [17] [18]). The model outlined here is a “rank”
model where link formation probabilities are based on externally-determined
prestige labels relative to other agents in the system; this general approach was
first proposed by Fortunato, Flammini and Menczer in [19]. Thus, this paper is
concerned with at least preliminary models of network self-organization.

Second, and more importantly, we investigate how this network model may be
used to estimate network content—that is, the rank of nodes—based on observed
structure alone. This is an important area for research, since in many applica-
tions of social network analysis we may know the structure of the network (for
example, if networks amongst organizations are measured using hyperlink data),
but attributes of actors remain a latent, unobserved variable. Our research builds
on prior work to estimate node attributes from observed structure [12], although
this research involved a different model and was focused on predicting distances
between nodes rather than the attributes of the nodes themselves. We find that
making inferences about node ranks is eminently doable, and this research es-
tablishes a baseline for methods of statistically inferring node attributes from
network structure only. We illustrate the use of this approach through compu-
tational simulation, which provides a starting point for future work emphasizing
mathematical proof.

The progression of this paper is as follows. We first discuss how the content
of a network may be thought of in terms of the rank of vertices—while this is



just one of many possible approaches, it has direct applicability to models of the
Web graph and of attendant social network structures as well. The model we
consider is stochastic, involving the random entry into and exit from the system
of vertices over time, and we present some essential results regarding the shifting
of ranks over time using the differential equations method [20]. We then overlay a
network model on top of the basic ranking model, which provides a starting point
for thinking about how network relations are chosen based on rank. We then
present the results of simulations that show how we may determine the content
(rank) of vertices based on observations of the structure only. While simulations
are used here justify the essential prediction method, future versions of this
paper will present rigorous results through mathematical proof. Moreover, due
to space limitations, proofs of theorems stated in this paper have been omitted
but will be included in a future version.

2. A rank model of content

In this section, we formally define a ranking model that reflects the “content”
of actors within a hypothetical social system. This model not only specifies the
process by which attributes are assigned to individual agents, but also specifies
the way in which these attributes shift over time as actors enter or exit the
system. Our focus is on modeling systems where the total number of actors is
large but fixed (for example, if at each time step an agent is removed uniformly at
random and immediately replaced by a new one). This type of behavior is most
consistent for well-established systems. Such stochastic systems are also usually
more challenging to model than, say, systems that are “young” or “middle-aged”
and hence growing over time, with agents being added to the system at a faster
rate than they are removed.

2.1. Model overview

At each time t, we have exactly n objects in a set Vt. Moreover, at each time t,
each object v ∈ Vt has rank rt(v) ∈ [n] (we use [n] to denote the set {1, 2, . . . , n}).
In order to obtain a proper ranking, the rank function rt : Vt → [n] is a bijection
for all t, so every object has a unique rank. In agreement with the common use
of the word “rank”, high rank refers to a object v for which rt(v) is small: the
highest ranked object is ranked number one, so has rank equal to 1; the lowest
ranked object has rank n. The initialization and update of the ranking is done
according to a ranking scheme. Various ranking schemes can be considered, and
might lead to different behavior. We first give the general model, and then list
a few natural ranking schemes.

The model produces a sequence {(Vt, rt)}∞t=0 of sets Vt of n objects and
ranking functions rt, where t denotes time. To initialize the model, let V0 be any
set of n objects and let r0 be any initial rank function r0 : V0 → [n] which is
consistent with the ranking scheme. For t ≥ 1 we form (Vt, rt) from (Vt−1, rt−1)
according to the following rules:



(i) Choose uniformly at random an object ut ∈ Vt−1 and delete it.

(ii) Add a new object v. (We refer to the time step t in which object v was added
as time in which v was born.)

(iii) Assign an initial rank to v, update Vt and the ranking function rt : Vt → [n]
according to the ranking scheme.

One can define a number of different ranking schemes. In this paper, we focus
on the random initial rank scheme but the concept of the ranking by age will
also be important. Therefore, let us define the following two schemes. In order
to distinguish them, we will use at for the ranking by age and rt for the random
initial rank.

(i) Ranking by age: The newly added object v obtains an initial rank n; its
rank decreases by one each time an object with smaller rank is removed.
Formally, for each v ∈ Vt−1 \ {ut}, at(v) = at−1(v) − γ, where γ = 1 if the
rank of the object deleted in step t is smaller than at−1(v), and 0 otherwise.

(ii) Random initial rank: The object added at time t obtains an initial rank
Rt which is randomly chosen from [n] according to a prescribed distribution.
Ranks of all objects are adjusted accordingly. Formally, for each v ∈ Vt−1 \
{ut}, rt(v) = rt−1(v) + δ − γ, where δ = 1 if rt−1(v) > Rt and 0 otherwise,
and γ = 1 if where the rank of ut, the object deleted in step t, is smaller
than rt−1(v), and 0 otherwise.

The results are generally about the behavior of ranking functions, where
the asymptotics are based on n tending to infinity. We say that an event holds
asymptotically almost surely (aas), if it holds with probability tending to one
as n → ∞. We will sometimes use the stronger notion of wep in favour of the
more commonly used aas, since it simplifies some of our proofs. We say that an
event holds with extreme probability (wep), if it holds with probability at least
1 − exp(−Θ(log2 n)) as n → ∞. Thus, if we consider a polynomial number of
events that each holds wep, then wep all events hold. To combine this notion
with asymptotic notations such as O() and o(), we follow the conventions in [21].

The coupon collector problem can give us insight into when all objects from
the initial set V0 will be deleted. Namely, let L = n(logn + ω(n)) where ω(n) is
any function tending to infinity with n. It is a well-known result that aas after
L steps all original objects will have been deleted.

2.2. Ranking by age

To understand the influence of age, we need to understand the behavior of the
age rank function at(v) defined before (in short, at(v) − 1 equals the number
of objects in Vt that were born earlier than v). We assume (without loss of
generality) that v was born at time 0, so a0(v) = n. For t > 0, at(v) decreases



by one precisely when in time step t+ 1, the object u which is deleted was older
than v, so at(u) < at(v). We obtain that

E(at+1(v) − at(v) | Gt) = −at(v) − 1

n− 1
,

conditional on the fact that v is not deleted. To analyze this random variable,
we use the differential equations method. Defining a real function z(x) to model
the behaviour of axn(v)/n, the above relation implies the following differential
equation

z′(x) = −z(x)

with the initial condition z(0) = 1.
The general solution is z(x) = exp(−x+C), C ∈ R and the particular solution

is z(x) = exp(−x). This suggests that a random variable at(v) should be close to
the deterministic function n exp(−t/n). The following theorem precisely states
the conditions under which this holds. This theorem is proved in [17].

Theorem 1. Let at(v) be the age rank of object v at time t. Then wep, for every
t in the range 0 ≤ t ≤ tf = 1

2n logn− 2n log logn, we have

at(v) = n exp(−t/n)(1 + O(log−1/2 n))

conditional upon the object v surviving until time tf .

2.3. Randomly chosen initial rank

In this section, we consider the case where the rank Ri of the object v added at
time i is chosen at random from [n]. The ranks of existing objects are adjusted
accordingly. We make the assumption that all initial ranks are chosen according
to the same distribution. In particular, we fix a continuous bijective function
F : [0, 1] → [0, 1], and for all integers 1 ≤ k ≤ n, we let

P(Ri ≤ k) = F

(

k

n

)

.

Thus, F represents the limit, for n going to infinity, of the cumulative distri-
bution functions of the variables Ri. To simplify the calculations while exploring
a wide array of possibilities for F , we assume F to be of the form

F (x) =

{

(2x)s/2 if 0 ≤ x ≤ 1/2

1 − (2(1 − x))s/2 if 1/2 < x ≤ 1
, where s ≥ 1.

This distribution has the advantage of allowing us to generalize our results
to a broad class of realistic initial distributions, ranging from situations where
initial ranks are distributed uniformly at random (when s = 1) to situations
where agents enter the system with a mediocre rank with higher probability
(when s > 1; in this case the highest probability rank is n/2). See Figure 1 (a)



to see the differences in distributions across s = 1.0, s = 1.2, and s = 1.5. This
functional form is reasonable because it reflects the notion that many types of
attributes follow a Normal distribution in social systems; it tends to be unlikely
that new agents will be “born” into the system with a very low rank or a very
high rank. If rank represents a type of dynamic fitness where agents compete for
better ranks, entering agents are unlikely to have very poor ranks because then
they may not be able to enter the system at all, and they are also unlikely to enter
with very good ranks, which are obtained only through a history of competition
in the system. Our functional form for F (x) reflects these possibilities.

Case s = 1: The case s = 1 represents the uniform distribution of the Ri. The
random variable rt(v) is sharply concentrated around the initial rank Ri. The
following result was obtained in [17].

Lemma 1. Suppose that object v obtained an initial rank R ≥ √
n log2 n. Then,

wep
rt(v) = R(1 + O(log−1/2 n))

to the end of its life.

Case s > 1: In this case, the initial rank is biased towards the middle range
ranks. The rank function exhibits more complex behaviour in this case. Due to
the symmetry of the function F (x), without loss of generality we can assume
that an initial rank is at most n

2 . For ranks close to n
2 we clearly cannot predict

the behaviour; the final rank can be bigger or smaller than the initial rank.
However, if the initial rank is separated a bit from the middle rank, then we get
a concentration.

Theorem 2. Suppose that an object v obtained an initial rank

r0(v) = R <
n

2
−
√
n log2 n

at time 0. Then wep, for every t in the range 0 ≤ t ≤ tf = 1
2n logn−2n log logn

conditional upon the object v surviving until time t,

r(v, t) =
n

2

((

(

2R

n

)1−s

− 1

)

e(s−1)t/n + 1

)
1

1−s

(1 + O(log−1/2 n)) (1)

provided

n

2

((

(

2R

n

)1−s

− 1

)

e(s−1)t/n + 1

)
1

1−s

≥
√
n log2 n .

Figure 1 (b),(c) presents the behaviour of different initial ranks for one spe-
cific value of s = 1.2 as well as the behaviour of one specific initial rank R = 0.4n
for different values of s. (Both rank and time is scaled by n.)



(a) (b) (c)
s = 1.0, 1.2, 1.5 R = 0.1, 0.2, 0.3, 0.4 s = 1.2, 1.3, 1.4, 1.5

Fig. 1. (a) Different distributions: f(x) = P
(

x ≤ R/n ≤ x + 1

100

)

; (b) The behaviour
for different initial ranks (s = 1.2); (c) The behaviour for different values of s (R = 0.4).

3. A rank model of network structure

In this section, we introduce the network on top of the process discussed in pre-
vious sections. We need two more parameters, the attachment strength α ∈ (0, 1)
and initial degree d ∈ N. This time, the model produces a sequence {(Gt, rt)}∞t=0

of graphs Gt = (Vt, Et) on n vertices and ranking functions rt : Vt → [n]. To
initialize the model, let G0 be any graph on n vertices and let r0 be any initial
rank function r0 : V0 → [n] which is consistent with the ranking scheme. For
t ≥ 1 we form Gt from Gt−1 according to the following rules:

(i) Choose uniformly at random a vertex ut ∈ Vt−1 and delete it.
(ii) Add a new vertex vt together with d edges from vt to existing vertices chosen

randomly with weighted probabilities. The edges are added in d substeps. In
each substep, one edge is added, and the probability that vi is chosen as its
endpoint (the link probability), is proportional to rt−1(vi)

−α.
(iii) Assign an initial rank to vt, update Vt and the ranking function rt : Vt → [n]

according to the ranking scheme.

In [17], it has been shown that the uniform distribution for the initial rank
(that is, the specific case of s = 1 in our model) generates wep a power-law
degree distribution with exponent 1 + 1/α. Here, we will show that it is also the
case for s > 1. However, there is a constant factor difference. Let Zk denote the
number of vertices of degree k, and Z≥k =

∑

l≥k Zl.

Theorem 3. Let 0 < α < 1 and d ∈ N, log4 n ≤ k ≤ nα/2 log−3α n. Then wep

Z≥k = (1 + o(1))21−s

(

d(1 − α)

k(1 + α)

)1/α

n.

The proof is a consequence of the following result.



Theorem 4. Let 0 < α < 1, d ∈ N, i = i(n) ∈ [n], and let vi be the vertex

whose age rank at time L equals a(vi, L) = i = xn. Let R be the initial rank of

vi, and assume that
√
n log2 n < R < n

2 − √
n log2 n. Then the expected degree

of vi is given by

Edeg(vi, L) = (1 + O(log−1/2 n))
d(1 − α)2α

1 + α

(

(

2R

n

)1−s

− 1

)

−α

1−s

(

x−α − x
)

,

provided x = o(1) or R/n = o(1); otherwise Edeg(vi, L) = O(1). Moreover, if

Edeg(vi, L) ≥ log4 n, then wep

deg(vi, L) = Edeg(vi, L) + O(
√

Edeg(vi, L) logn),

and if Edeg(vi, L) < log4 n, then wep deg(vi, L) = O(log4 n).

4. The discovery of content through structure

While the Web graph is a useful platform for social networks research, the notion
that networks self-organize as a function of network content suggests the need
to observe both structure as well as attributes of the nodes. While structures
may be observed directly, for example through hyperlink data, in most cases
attributes (ranks) of agents embedded in the network are latent, unobserved
variables. However, given a realistic model of the process by which the network
was generated, it is possible to infer likely attributes of network agents.

Consider, for example, the degree of a given node. Given the model outlined
here, this degree is a function of two factors related to content: first, the length
of time the node has been in the system, and second, the initial rank assigned to
the node when it was “born” into the network. Agents with smaller initial ranks
tend to have larger degrees, and older vertices also tend to have larger degrees.
Despite this correlation, however, the true relationship is quite complicated and
it would seem to be a lost cause to try to infer only one of these attributes
(age or rank) based on degree only. Fig 3 presents the relation between age and
degree for vertices of degree at least d/2 when networks are simulated according
to the model described here (n = 20, 000, d = 100, s = 1.5, and α = 0.8). Young
vertices have small degree (there is no time to accumulate neighbours, even if
the initial rank is good) but old vertices can still have small degree (because
they have an unattractive rank).

As noted above, networks generated according to this rank model are char-
acterized by power-law degree distributions, which is readily observed within
simulated networks. Fig 2 presents the cumulative degree distribution on a log-
log scale: y(x) is the number of vertices of degree at least x.

It turns out, however, that it becomes feasible to estimate these properties
when we broaden our focus from the degree of a single agent to properties of their
second neighborhood. Consider, for example, the following coefficient defined
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Fig. 2. Power-law degree distribution generated by the rank model
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Fig. 3. Degree of v vs. the age rank of v (rescaled)

for a vertex v of non-zero degree that is proportional to the average degree of
neighbours of v:

c2(v) =

∑

u∼v deg(u)

deg(v)
.

We put c2(v) = 0 if deg(v) = 0. Clearly old nodes have more old neighbours
compared to younger nodes. In other words, there is a correlation between the
age of v and ages of its neighbours. On the other hand, ranks are generated
independently, so a distribution of ranks of the neighbours of v should be similar
to the distribution we use in the model. The more neighbours v has, the better
correlation we should see. Older vertices should have larger coefficients c2(v)’s.
See Fig. 4(a) for the relation for vertices of degree at least d/2.

This process can even be carried further to develop even more finely-tuned
estimates of agents’ unobserved attributes. We can take a look at third, fourth,
and higher-order neighborhoods by defining, recursively, for i ≥ 3

ci(v) =

∑

u∼v ci−1(u)

deg(v)
,

provided that deg(v) > 0; otherwise, ci(v) = 0. Again, in this case older vertices
should have larger coefficients and the error should decrease for, say, i = 3 and
i = 4. See Fig. 4(b-c) for the results for c3(x) and c4(x).

Even upon casual examination, these scatterplots reveal a strong, nearly
linear, relationship between the average degree of neighbors (or higher-order
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ci coefficients) and the age of node. Inferring rank rather than age may be
accomplished in a similar way.

One way of viewing the increasing predictive power of these structural char-
acteristics is to perform an simple OLS linear regression with node age as the
dependent variable (the unobserved variable to be inferred in real-world applica-
tions) and degree or various ci measures as possible independent variables. Using
this approach, we find that predicting age as a linear function of average degree
becomes more precise as we move to higher-order neighborhoods. For example,
the R2 statistic when age is predicted using degree only is 0.01, meaning that
node degree explains only 1% of the variance in actual node age. When the av-
erage degree of neighbor (c2) is used as an independent variable, a linear model
explains 35% of the variance on age (R2 = 0.35). R2 jumps to 0.77 for c3, and
0.83 for c4.

These regression models provide at least heuristic evidence that one can
achieve fairly accurate predictions of age when one examines the degree of neigh-
bors, and neighbors of neighbors, and so forth. And while these linear models
are suggestive of strong patterns, the scatterplots also make it clear that the
accuracy with which we can predict age depends on the degree of the node. In
particular, it seems that for low-degree nodes age may be predicted with fair
accuracy (in particular because, having just entered the system, the number of
relationships is a more direct result of initial rank) while the relationship between
ci and age for high-degree nodes is less precise.

It is also interesting to note that going from the second neighborhood to the
third neighborhood provides a smaller marginal benefit in terms of predictive
power, as measured by the R2 values. While examination of the third neighbor-
hood provides the strongest inferences regarding age, of course there will be an
upper bound on the “depth” of neighborhoods that may be examined, plus there
is likely to be an optimal neighborhood to examine in terms of maximizing the
predictive power of this method. These issues, along with the strength of pre-
dictions that may be made for small- versus high-degree agents, will be sorted
out through mathematical proof in a journal version of this paper.



5. Conclusion

This paper outlined a model of network self-organization that is driven by the
“ranks” of individual agents in terms of an arbitrary attributes that are in-
herently individual phenomenon, such as wealth, power, beliefs, skills, or any
other actor-level variables that are likely to play an important role in network-
ing behavior. This is a stochastic model involving the formation and deletion of
network ties, and adjustment in ranks, as actors dynamically enter and exit the
system over time.

This research builds upon prior work in ranking and associated models of
network self-organization, and continues the enterprise of linking these network
models to enhance our understanding of the dynamics of real-world social sys-
tems. An important area for future research is to carefully consider how network
structure evolves as a function of network content. Of course, this not only
requires models of networks per se, but also requires models of attributes of in-
dividuals and how these attributes are manifest in network structure. The World
Wide Web provides an excellent platform for the study of such networks because
it yields large-scale, high-quality network data that contains traces of real-world
interactions amongst social or political agents.

On the other hand, network content is often exceedingly difficult to observe
and can be a limiting factor on our ability to study complex, self-organizing so-
cial networks. However, given realistic models of how network structure is driven
by content, it seems that we are able to make reasonable inferences regarding
the attributes of individuals based on structure only. This research provides a
platform for more research, emphasizing analytical proof, the exploits the poten-
tial “reversibility” of mathematical models to infer latent, unobserved variables
that are crucial to the development of network theory in the social sciences.
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