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Abstract. A geodesic in a graph G is a shortest path between two vertices of G.
For a specific function e(n) of n, we define an almost geodesic cycle C in G to be a
cycle in which for every two vertices u and v in C, the distance dG(u, v) is at least
dC(u, v) − e(n). Let ω(n) be any function tending to infinity with n. We consider
a random d-regular graph on n vertices. We show that almost all pairs of vertices
belong to an almost geodesic cycle C with e(n) = logd−1 logd−1 n + ω(n) and |C| =
2 logd−1 n + O(ω(n)). Along the way, we obtain results on near-geodesic paths. We
also give the limiting distribution of the number of geodesics between two random
vertices in this random graph.

1. Introduction

A geodesic in a graph G is a shortest path between two vertices of G, and a geodesic
cycle C in G is a cycle in which, for every two vertices u and v in C, there is a geodesic
between u and v contained in C. The term “geodesic” comes from the discrete metric
space naturally associated with a graph, whose elements are the vertices of the graph,
and where the distance between two vertices is the length of a shortest path joining
them in the graph. The study of geodesic cycles in a graph provides information about
the “shape” of the graph. For instance, it is easy to see that if a cycle of length t is
embedded into a tree, then some vertex of the tree receives two vertices whose distance
around the cycle is ‘large’ (it is not hard to show a lower bound of t/3). In this sense,
a graph with a long geodesic cycle has a very different shape from a tree. We do not
define “shape”, but one might take the minimum metric distortion of an embedding of
one graph in another to be a measure of the difference of their shapes. In connection
with the influence of geodesics upon the shape of a graph, Angel, Holroyd, Romik and
Virág [2] study random geodesics in a graph defined from permutations, and conjecture
that the geodesics lie close to great circles in a particular Euclidean embedding of the
graph.

Many properties of random graphs, and in particular random regular graphs, have
been studied in the past. Imposing the regularity constraint has a strong influences on
diameter and connectivity, and we were motivated by the considerations above to ask
whether these graphs (for degree at least 3) have geodesic paths and cycles between two
randomly chosen vertices. Unfortunately, results on geodesic cycles have proved hard to
obtain. However, a similar feeling of the “shape” of a graph can be gained by considering
the following relaxation of the definition of geodesic cycles. In the terminology of Bonk
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and Schramm [6], a k-roughly geodesic cycle is one in which, for every two vertices u
and v, the distance dG(u, v) is at least dC(u, v)− k. Let ω(n) be any function tending
to infinity with n, and consider the error function e(n) = logd−1 logd−1 n + ω(n). We
define an almost geodesic cycle C in G to be one that is e(n)-roughly geodesic. Almost
geodesic cycles are in some sense as difficult as geodesic cycles to embed into trees with
low metric distortion. We investigate the existence of almost geodesic cycles through
random pairs of vertices in a random regular graph, and related questions on geodesics
and paths that are nearly geodesic, in a sense to be made precise.

Our results on almost geodesic cycles cannot be directly translated to results about
geodesic cycles. For instance, we do not know whether almost all pairs of vertices lie in
a geodesic cycle. However, the proof of our main theorem allows us to draw conclusions
about another measure of shape, namely hyperbolicity. Following Gromov [8], a graph
G is δ-hyperbolic if, for every four vertices u, v, w, z in G, the two largest values in the
set {d(u, v) + d(w, z), d(u,w) + d(v, z), d(u, z) + d(v, w)} differ by at most 2δ. (So, for
instance, a tree is 0-hyperbolic.) This graph invariant has far-reaching consequences
in the design of algorithms. As an easy consequence of our work, we establish that a
random d-regular graph, for d ≥ 3, is a.a.s. not δ-hyperbolic for δ = (logd−1 n)/2−ω(n).
On the other hand, it is easy to see that this graph must be δ-hyperbolic for δ equal to
half of its diameter, which is a.a.s. (logd−1 n)/2 + O(log log n) by the main result of [5].
See Section 4 for more details.

Our results refer to the probability space of random d-regular graphs with uniform
probability distribution. This space is denoted Gn,d, and asymptotics (such as “asymp-
totically almost surely”, which we abbreviate to a.a.s.) are for n →∞ with d ≥ 3 fixed,
and n even if d is odd.

Some related previous research focused on finding (edge/internally)-disjoint paths
with many sources and targets. Frieze and Zhao [7] showed that for sufficiently large d
there exist fixed positive constants α and β such that a graph G taken from Gn,d a.a.s.
has the following property: for any choice of k pairs {(ai, bi) | i = 1, . . . , k}, satisfying

(i) k ≤ dαdn/ logd ne, and
(ii) for each vertex v: |i : ai = v|+ |i : bi = v| ≤ βd,

there exist edge-disjoint paths in G connecting ai to bi for all i = 1, 2, . . . , k. This result
is optimal up to constant factors. The paths returned by their algorithm are of length
of at least 10 logd n.

Our focus is different as it comes from different motivation: showing the existence
of an abundance of almost geodesic cycles in Gn,d. We obtain a result on internally
disjoint paths referring to one pair of vertices fixed before the graph is chosen. This is a
much weaker model than the model of [7], that dealt with Θ(n/ log n) pairs given by an
adversary after the graph is chosen. However, we show the existence of disjoint paths
that approximate the optimal path (whose length is a.a.s. in [logd−1 n−ω(n), logd−1 n+
ω(n)]) by an additive factor of O(ω(n)), for any function ω(n) such that lim

n→∞
ω(n) = ∞,

whereas the result of [7] gives at best a constant multiplicative factor. Additionally,
our result holds for all d ≥ 3. We show that it is not only true that randomly chosen
vertices u and v are a.a.s. connected by d internally disjoint paths, but these paths may
all be chosen with length within a small error ω(n) of their distance d(u, v). Hence,
we prove that their distance in the graph can only be increased by ω(n) if at least d
vertices are deleted. As u and v have degree d, the deletion of this many vertices is
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sufficient to disconnect them from the graph. Note that the existence of the maximum
possible number of internally disjoint paths, d, that there can possibly be between any
two vertices u and v in a random regular graph G is an immediate consequence of G
being a.a.s. d-connected, as was shown independently by Bollobás [4] and Wormald [9].

More precisely, the first main result in this paper shows the existence of paths of
the above form with the additional property that every pair of them creates an almost
geodesic cycle.

Theorem 1.1. Take any integer d ≥ 3 and any function ω(n) with ω(n) → ∞. Let
G ∈ Gn,d and choose vertices u and v in V (G) independently with uniform probability.
Then a.a.s. the following hold:

(i) |d(u, v)− logd−1 n| < ω(n),
(ii) there are d paths connecting u and v, all of length at most logd−1 n+ω(n), such

that the subgraph induced by each pair of these paths is an almost geodesic cycle.

Note that the d paths in (ii) are pairwise internally disjoint because each pair of them
induces a cycle.

We may obtain the lower bound in part (i) of the theorem from an elementary
observation. Note that, given G ∈ Gn,d, the number of vertices at distance at most i
from a vertex u is bounded above by

1 + d + d(d− 1) + . . . + d(d− 1)i−1 = O
(
(d− 1)i

)
.

So, there are O
(
n(d− 1)−ω(n)

)
vertices at distance i = logd−1 n− ω(n) from any given

vertex of G, where ω(n) → ∞. As a consequence, if two vertices of G are chosen
independently with uniform probability, then the probability that the second vertex is
at distance at most i = logd−1 n− ω(n) from the first is at most

1

n
O

(
n(d− 1)−ω(n)

)
= O

(
(d− 1)−ω(n)

)
,

and therefore, a.a.s.
d(u, v) ≥ logd−1 n− ω(n) (1)

if u, v are vertices chosen independently with uniform probability in G ∈ Gn,d and ω(n)
is a function satisfying ω(n) → ∞. The fact that a.a.s. d(u, v) ≤ logd−1 n + ω(n) will
follow from our study of the distribution of the number of geodesics in G ∈ Gn,d.

The rest of the proof requires more sophisticated arguments. Instead of working
directly in the uniform probability space of random regular graphs on n vertices Gn,d,
we use the pairing model of random regular graphs, first introduced by Bollobás [3],
which is described next. Suppose that dn is even, as in the case of random regular
graphs, and consider dn points partitioned into n labelled cells v1, . . . , vn of d points
each. A pairing of these points is a perfect matching of them into dn/2 pairs. Given
a pairing P , we may construct a multigraph G(P ), with loops allowed, as follows: the
vertices are the cells v1,. . . , vn, and a pair {x, y} in P corresponds to an edge vivj

in G(P ) if x and y are contained in the cells vi and vj, respectively. It is an easy
fact that the probability of a random pairing corresponding to a given simple graph G
is independent of the graph, hence the restriction of the probability space of random
pairings to simple graphs is precisely Gn,d. Moreover, it is well known that a random
pairing generates a simple graph with probability asymptotic to a constant depending
on d, so that any event holding a.a.s. over a probability space of random pairings also
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holds a.a.s. over the corresponding space Gn,d. For this reason, asymptotic results over
random pairings suffice for our purposes. The advantage of using this model is that the
pairs may be chosen sequentially so that the next pair is chosen uniformly at random
over the remaining (unchosen) points. For more information on this model, see [10].

In a slightly different direction, we also investigate the limiting distribution of the
number of geodesics joining two randomly chosen vertices in a random regular graph.
Indeed, we obtain the following precise result.

Theorem 1.2. Fix an integer l ≥ 1. The probability that two vertices u, v chosen
independently with uniform probability in G ∈ Gn,d are joined by exactly l distinct
geodesics is asymptotic to

∞∑

k=−∞

(
d(d− 1)2k−2γ(n,d)−2

)l

l!
exp

(
−d(d− 1)2k−2γ(n,d)−1

d− 2

)
×

× (
1 + (d− 1)l exp(−d(d− 1)2k−2γ(n,d)−1)

)
.

Despite its daunting appearance, this formula answers a very natural question, namely
the probability, as n tends to infinity, that two typical vertices in a random regular graph
on n vertices are joined by exactly l shortest paths.

In Section 2 of this paper, the number of geodesics is investigated and Theorem 1.2
is proved. The study of almost geodesic cycles, including the proof of Theorem 1.1, is
in Section 3. Some consequences of our work and other final remarks are in Section 4.

2. Distribution of the number of geodesics

The first portion of our argument is a simplified version of part of the argument of
Bollobás and Fernandez de la Vega [5]. We consider the process in which the neigh-
bourhoods of u and v are exposed step by step. First, the neighbours of u and v are
revealed, then the vertices at distance two, and so on. This sequential exposure of the
random regular graph is analysed using the random pairing model mentioned in the
Introduction.

Let Ni(u) denote the set of vertices at distance at most i from u. Note that, in the
early stages of this process, the graphs grown from u and v tend to be trees, hence the
number ni of elements in Ni(u) is approximately

ni−1 + (d− 1)(ni−1 − ni−2) .

Let fi denote the number of vertices in a balanced d-regular tree, that is,

fi = 1 + d

i−1∑
j=0

(d− 1)j = 1 +
d((d− 1)i − 1)

d− 2
,

and let

i0 =

⌊
1

2
logd−1 n

⌋
. (2)

Lemma 2.1. Let ω(n) be any function of n such that ω(n) → ∞. For i ≤ i0 − ω(n)
a.a.s. the cardinality ni of Ni(u) equals fi. Moreover, for i ≤ i0 + ω(n) a.a.s.

ni = fi −O
(
ω(n)(d− 1)3(i−i0)+ω(n)

)
.



GEODESICS AND ALMOST GEODESIC CYCLES IN RANDOM REGULAR GRAPHS 5

Proof. First note that it is sufficient to consider the case when ω(n) = o(log n).
Since fi denotes the number of vertices in a balanced tree where every non-leaf

vertex has degree d, the first assertion follows if we show that a.a.s. the set of vertices at
distance at most i ≤ i0−ω(n) of a vertex u induces a tree. In other words, if we expose,
step by step, the vertices at distance 1, 2, . . . , i from u, we have to avoid, at step j, edges
that induce cycles. So, we wish not to find edges between any two vertices at distance
j from u or edges that join any two vertices at distance j to a same vertex at distance
j +1 from u. We shall refer to edges of this form as ‘bad edges’. Note that the expected
number of ‘bad edges’ at step i + 1 is equal to O(n2

i /n) = O(f 2
i /n) = O((d− 1)2i/n).

Consider i1 = b1
2
logd−1 n− ω(n)c. The expected number of ‘bad edges’ found up to

step i1 is equal to
i1−1∑
j=0

O
(
(d− 1)2j/n

)
= O

(
(d− 1)2i1/n

)
= O

(
(d− 1)−2ω(n)

)
= o(1) .

Thus, by Markov’s inequality, a.a.s. there are no ‘bad edges’ until step i1, hence a.a.s.
Ni1(u) is a tree and ni = fi for i ≤ i1.

In order to prove the second assertion, notice that the expected number of ‘bad edges’
added between step i1 + 1 and step i, i ≤ bi0 + ω(n)c ≤ b1

2
logd−1 n + ω(n)c is equal to

i−1∑
j=i1

O
(
(d− 1)2j/n

)
= O

(
(d− 1)2i/n

)
= O

(
(d− 1)2(i−i0)

)
.

Thus, again by Markov’s inequality, a.a.s. the total number of ‘bad edges’ at time
i is at most O

(
ω(n)(d − 1)2(i−i0)

)
. Notice that one ‘bad edge’ added in this time

interval can destroy at most two tree branches of size O
(
(d− 1)i−i0+ω(n)

)
. This occurs

because the ‘bad edge’ creates a cycle instead of exposing a new vertex v. The branch
of descendants of v, which would appear had v been exposed and had the process
continued as a balanced d-regular tree, is therefore destroyed and has size at most
1 + (d− 1) + · · ·+ (d− 1)i−i0+ω(n) = O

(
(d− 1)i−i0+ω(n)

)
.

Thus, we have a.a.s.

ni = fi −O
(
ω(n)(d− 1)2(i−i0)

) ·O(
(d− 1)i−i0+ω(n)

)
.

This completes the proof of the lemma. ¤
Immediately from this lemma, we have

Corollary 2.2. For i = i0 + o(log n) a.a.s.

ni = fi − no(1) = n1/2+o(1) .

In the remainder of this notes, let u, v be vertices chosen independently with uniform
probability in a graph G ∈ Gn,d and consider the process of exposing the neighbourhoods
of u and v introduced in Lemma 2.1. We say that the neighbourhoods of u and v join
at time i if Ni−1(u) ∩ Ni−1(v) = ∅ and Ni(u) ∩ Ni(v) 6= ∅. Moreover, given functions
g = g(n) and h = h(n), we say that g is asymptotic to h, denoted by f ∼ g if

lim
n→∞

g(n)

h(n)
= 1.

Also, whenever a result that holds for any ω(n) satisfying limn→∞ ω(n) = ∞ is proven,
we shall assume without loss of generality that ω(n) = o(log n).
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Lemma 2.3. Let k be a fixed integer and define γ(n, d) = 1
2
logd−1 n− i0, the fractional

part of 1
2
logd−1 n. Then

P(Ni0+k(u) ∩Ni0+k(v) = ∅) ∼ exp

(
−d(d− 1)2k−2γ(n,d)

d− 2

)
.

Proof. Denote Si the event that the neighbourhoods of u and v are separate at time i,
that is, Nj(u) and Nj(v) did not join up to time i. We claim that

P(Si0+k | Si0+k−1) ∼ exp
(−d2(d− 1)2k−2γ(n,d)−2

)
.

This implies the result for the following reasons. If M is a positive integer, −M < k,

P(Si0+k) = P(Si0−M)

×
k∏

l=−M+1

P(Si0+l | Si0+l−1).

Furthermore, equation (1) establishes that a.a.s. d(u, v) > 2i0 − ω(n) for any function
ω(n) with limn→∞ ω(n) = ∞. In particular, given ε > 0, we can choose M = Mε > 0
sufficiently large so that P(Si0−M) > 1− ε. Given such an M , we use the previous
equation to derive

P(Si0+k) > (1− ε)
k∏

l=−M+1

exp
(−d2(d− 1)2l−2γ(n,d)−2

)
(1− o(1))

∼ (1− ε) exp

(
k∑

l=−M+1

− d2(d− 1)2l

(d− 1)2+2γ(n,d)

)

= (1− ε) exp

(
− d

(
(d− 1)2k+2M − 1

)

(d− 1)2M+2γ(n,d)(d− 2)

)
.

The same calculations also lead us to

P(Si0+k) <

k∏

l=−M+1

exp

(
− d2(d− 1)2l

(d− 1)2+2γ(n,d)

)
(1− o(1))

∼ exp

(
− d

(
(d− 1)2k+2M − 1

)

(d− 1)2M+2γ(n,d)(d− 2)

)
.

Putting the last two equations together and letting ε → 0, during which we may assume
Mε →∞, we have

P(Si0+k) ∼ exp

(
−d(d− 1)2k−2γ(n,d)

d− 2

)
,

as required.
We now focus on proving the claim. First we would like to find the expected number

of joins at time i = i0+k given that Ni−1(u)∩Ni−1(v) = ∅. Let Ui−1 = Ni−1(u)\Ni−2(u)
and Vi−1 = Ni−1(v) \ Ni−2(v). These are the sets of vertices at distance i − 1 from u
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Figure 1. First case – odd length.
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Figure 2. Second case – even length.

and v, respectively. Observe that, by Lemma 2.1

|Ui−1| = |Ni−1(u)| − |Ni−2(u)| = fi−1 − fi−2 + O
(
ω(d− 1)3k+ω(n)

)

= d(d− 1)i−2 + O
(
ω(d− 1)3k+ω(n)

)
= d(d− 1)k−γ(n,d)−2

√
n + O

(
ω(d− 1)3k+ω(n)

)

∼ d(d− 1)k−γ(n,d)−2
√

n.
(3)

Clearly, the same holds for |Vi−1|.
We have to consider two types of join at time i. The first type (see Figure 1) consists

of edges that join one vertex in Ui−1 to a vertex in Vi−1 and therefore create uv-paths of
odd length. The random variable corresponding to the number of such joins created at
time i is denoted by Oi. The second type (see Figure 2) contains joins such that a vertex
in V (G)\ (Ni−1(u)∪Ni−1(v)) has neighbours in each of Ui−1 and Vi−1. This generates a
path of even length between u and v, and the random variable for the number of these
joins is Ei.

Consider joins of the first type. Recall that we are considering the process of exposing
the neighbourhoods of u and v step by step. After the first i−1 steps, we have exposed
the sets Ni−1(u) and Ni−1(v), which are assumed to be disjoint. Recall that, according
to the pairing model (see Introduction), any vertex in Ui−1 and Vi−1 can be regarded
as a cell of distinct points, where the number of points corresponds to the number of
unexposed neighbours of this vertex. The probability that one given point joins another
is then asymptotic to 1/(dn), since any pair of unmatched points is equally likely to be
paired and the whole process has, by Corollary 2.2, matched at most n1/2+o(1) = o(n)
pairs of points to this moment. Asymptotically, there are |Ui−1||Vi−1|(d − 1)2 pairs of
points such that one is associated with a vertex in Ui−1 and the other with a vertex in
Vi−1. This is because the hypothesis i = i0 +k implies, by Lemma 2.1, that the number
of vertices in Ui−1 or Vi−1 incident with ‘bad edges’ created at step i − 2 is a.a.s. at
most O (ω(n)) for any ω(n) →∞, and it is clear that each vertex in Ui−1 or Vi−1 with
degree larger than 1 in G[Ni−1(u)] ∪G[Ni−1(v)] is incident with a ‘bad edge’.

Thus, the expected number Oi−1 of edges of the first type joining the neighbourhoods
of u and v at time i− 1 satisfies

E (Oi−1 | Si−1) ∼ (d− 1)2

dn
|Ui−1||Vi−1| . (4)
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A similar argument shows that

E (Ei−1 | Si−1) ∼ d(d− 1)(d− 1)2

d2n2
n|Ui−1||Vi−1| = (d− 1)3

dn
|Ui−1||Vi−1| . (5)

As a consequence,

E(number of joins at time i = i0 + k | Si−1) = E (Oi−1 | Si−1) + E (Ei−1 | Si−1)

=
(d− 1)2

n
|Ui−1||Vi−1| ∼ d2(d− 1)2i−2

n
=

d2(d− 1)2k

(d− 1)2+2γ(n,d)
.

In this equation, the cardinalities of Ui−1 and Vi−1 have been approximated by equation
(3).

We wish to apply the method of moments to establish

P(Si0+k| Si0+k−1) ∼ exp
(−d2(d− 1)2k−2γ(n,d)−2

)
,

so we have to verify that the j-th factorial moment of the random variable Z counting

the number of joins at time i = i0 + k satisfies E([Z]j) = E(Z)j

j!
, for all j ≥ 2.

Let j ≥ 2 and suppose that the subgraphs induced by Ni−1(u) and Ni−1(v) are
disjoint. As before, let Ui−1 = Ni−1(u) \Ni−2(u), Vi−1 = Ni−1(v) \Ni−2(v), and, given
r ∈ Ui−1, s ∈ Vi−1, t ∈ V (G)\(Ni−1(v)∪Ni−1(u)), introduce indicator random variables
X(r,s) for the event that rs is an edge in G and Y(r,s,t) for the event that rt and st are
both edges in G. So,

Z =
∑

r ∈ Ui−1, s ∈ Vi−1

X(r,s) +
∑

r ∈ Ui−1, s ∈ Vi−1

t ∈ V (G) \ (Ni−1(v) ∪Ni−1(u))

Y(r,s,t)

is the random variable counting the number of joins that appear between the neigh-
bourhoods of u and v at step i.

The j-th factorial moment of Z is given by

E([Z]j) =

j∑

l=0

∑
?

P((X(rm,sm) = 1, 1 ≤ m ≤ l)∧ (Y(rm,sm,tm) = 1, l +1 ≤ m ≤ j)), (6)

where, for any given l,
∑

? denotes the sum over all distinct ordered pairs (rm, sm),
1 ≤ m ≤ l, and (rm, sm, tm), l + 1 ≤ m ≤ j.

We shall prove later that the relevant terms in this sum are the ones for which all the
ordered pairs are disjoint, that is, there is no repetition of vertices among the j events.
Assuming this, we obtain

E([Z]j) =

j∑

l=0

(|Ui−1|
j

)(|Vi−1|
j

)(
n− o(n)

j − l

)(
j

l

)2

l![(j − l)!]2×

×
( (d− 1)2

dn− o(n)

)l( (d− 1)3

dn2 − o(n2)

)j−l

.

This is because there are
(|Ui−1|

j

)(|Vi−1|
j

)(
n−o(n)

j−l

)
ways of choosing j vertices in each of Ui

and Vi, and of choosing j− l vertices in V (G)\ (Ni−1(u)∪Ni−1(v)). Moreover, pairing l

of the chosen vertices in Ui with l of the chosen vertices in Vi can be done in
(

j
l

)2
l! ways,

whereas there are [(j − l)!]2 ways of creating triples on the remaining chosen vertices
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in Ui, Vi and the vertices chosen in V (G) \ (Ni−1(u) ∪ Ni−1(v)). Now that we fixed
distinct ordered pairs (rm, sm), 1 ≤ m ≤ l, and (rm, sm, tm), l + 1 ≤ m ≤ j, the term(

(d−1)2

dn−o(n)

)l( (d−1)3

dn2−o(n2)

)j−l
corresponds to the probability that all the events X(rm,sm) = 1

and Y(rm,sm,tm) = 1 occur simultaneously, since there is only a finite number of them.
The previous sum is asymptotic to

j∑

l=0

|Ui−1|j
j!

|Vi−1|j
j!

nj−l

(j − l)!

j!2

l!

((d− 1)2

dn

)l((d− 1)3

dn2

)j−l

=
|Ui−1|j|Vi−1|j(d− 1)2j

njdjj!

j∑

l=0

(d− 1)j−lj!

l!(j − l)!

=
|Ui−1|j|Vi−1|j(d− 1)2j

njdjj!

j∑

l=0

(
j

l

)
(d− 1)j−l

=
|Ui−1|j|Vi−1|j(d− 1)2j

njj!
=

1

j!
(EZ)j =

1

j!

(
d2(d− 1)2k

(d− 1)2+2γ(n,d)

)j

.

It remains to show that indeed the sum over all disjoint ordered pairs (rm, sm),
1 ≤ m ≤ l, and (rm, sm, tm), l + 1 ≤ m ≤ j, is asymptotic to the sum over all distinct
ordered pairs. Suppose that there are j − a distinct elements appearing in the first
coordinate, j − b in the second and j − l − c in the third, where a + b + c ≥ 1. The
terms of this form in equation (6) are bounded above by

j∑

l=0

∑
∗∗

(
j − 1

a

)(|Ui−1|
j − a

)(
j − 1

b

)(|Vi−1|
j − b

)(
j − l − 1

c

)(
n− o(n)

j − l − c

)
×

×
(

j

l

)2

l![(j − l)!]2
( (d− 1)2

dn− o(n)

)l( (d− 1)3

dn2 − o(n2)

)j−l

,

where
∑

∗∗ denotes the sum over all triples (a, b, c) ∈ {0, . . . , j− 1}2×{0, . . . , j− l− 1}
satisfying a + b + c ≥ 1. This is because there are

(|Ui−1|
j−a

)
ways of choosing j − a

vertices in Ui−1 and
(

j−1
a

)
ways of building a multi-set of cardinality j with j − a given

elements (and using all of them). The same is true for choosing vertices in Vi−1 and
V (G) \ (Ni−1(u) ∪Ni−1(v)). Our last expression is smaller or equal to

j∑

l=0

∑
∗∗

(j − 1)a+b(j − l − 1)c

a! b! c!

|Ui−1|j−a

(j − a)!

|Vi−1|j−b

(j − b)!

nj−l−c

(j − l − c)!
×

× j!2

l!

( (d− 1)2

dn− o(n)

)l( (d− 1)3

dn2 − o(n2)

)j−l

.

If we divide this by |Ui−1|j |Vi−1|j(d−1)2j

njj!
, this is asymptotic (with respect to n) to

j∑

l=0

∑
∗∗

K(a, b, c, j, l, d)

|Ui−1|a|Vi−1|bnc
,

where K(a, b, c, j, l, d) does not depend on n. Since |Ui−1|a|Vi−1|bnc →∞ as n →∞ for
every a+ b+ c ≥ 1, we conclude that the above sum tends to zero as n tends to infinity
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and therefore the terms related to non-disjoint tuples in equation (6) can indeed be
ignored to compute E([Z]j).

Given this, the method of moments implies that

P(no joins at time i = i0 + k | Ni−1(v) ∩Ni−1(u) = ∅) ∼ exp
(−d2(d− 1)2k−2γ(n,d)−2

)
,

which completes the proof of the claim and therefore establishes the lemma. ¤

We are now prepared to prove the result mentioned at the end of the last section.

Corollary 2.4. Let u, v be vertices chosen independently with uniform probability in
G ∈ Gn,d. For any function ω(n) such that ω(n) →∞, the assertion d(u, v) < logd−1 n+
ω(n) holds a.a.s.

Proof. Let ε > 0. Lemma 2.3 implies that the probability of the event Dk that u and v
are at distance greater than 2i0 + 2k is asymptotic to

exp

(
−d(d− 1)2k−2γ(n,d)

d− 2

)
,

where k a fixed integer and γ(n, d) is the fractional part of 1
2
logd−1 n. So, P(Dk) < ε

for k sufficiently large, and the result follows. ¤

Lemma 2.5. Let k be an integer and let i0 and γ(n, d) be the integer and fractional parts
of 1

2
logd−1 n, respectively. Define Oi to be the random variable counting the number of

uv-paths of odd length, that is, paths of the first case, created at step i = i0 + k. Let Ei

be the equivalent random variable for paths of even length. Then

(i) With µk = d(d− 1)2k−2γ(n,d)−2,

P(Oi0+k = j | Ni0+k−1(u) ∩Ni0+k−1(v) = ∅) ∼ µj
k

j!
exp(−µk).

(ii) With νk = d(d− 1)2k−2γ(n,d)−1,

P(Ei0+k = j | Ni0+k−1(u) ∩Ni0+k−1(v) = ∅ ∧Oi0+k = 0) ∼ νj
k

j!
exp(−νk).

Proof. This can be proven by the method of moments using calculations very similar
to the ones in the previous lemma, proceeding separately for joins of the first type
and joins of the second type. For the former, we condition on the event that no joins
occurred in previous steps of the process, and, for the latter, we further assume that
no joins of the first type occurred in the current step. The details are omitted. ¤

We observe that, alternatively, the proofs of the previous lemma and of Lemma 2.3
could be unified by considering joint factorial moments of random variables for joins of
the first type and of the second type.

We are now ready to deduce one of the main results, Theorem 1.2, which is now
restated.

Theorem 1.2. Fix an integer l ≥ 1. The probability that two vertices u, v chosen
independently with uniform probability in G ∈ Gn,d are joined by exactly l distinct
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geodesics is asymptotic to

∞∑

k=−∞

(
d(d− 1)2k−2γ(n,d)−2

)l

l!
exp

(
−d(d− 1)2k−2γ(n,d)−1

d− 2

)
×

× (
1 + (d− 1)l exp(−d(d− 1)2k−2γ(n,d)−1)

)
.

Proof. Let Ji denote the event that the neighbourhoods of u and v join at time i, and let
Ẑl be the event that u and v are connected by exactly l geodesics. Note that given Ji,
all geodesics must be present in the neighbourhood exposure process at time i. Observe
that, because a geodesic is a shortest path between u and v, the event Ẑl occurs if, at
the time the neighbourhoods join, there are exactly l geodesics created by joins of the
first type, or exactly l created by joins of the second type. So, given a positive integer
M ,

P(Ẑl) = P(Ẑl ∧
i0−M⋃

k=1

Jk) +
M−1∑

k=−M+1

P(Ẑl ∧ Ji0+k) + P(Ẑl ∧
⋃

k≥i0+M

Jk).

The first and last element in the right-hand side can be made less than ε, for any given
ε > 0, by choosing M = Mε sufficiently large, as ensured by Corollary 2.4 and by the
fact that equation (1) holds a.a.s.

We now treat the terms of the form P(Ẑl ∧ Ji0+k) for integers k ∈ [−M + 1,M − 1].
A significant simplification to our calculations comes from the fact that, when the
neighbourhoods first join, a single geodesic is produced by each particular paired that
joins. To this end, let Bi be the bad event that some vertex in Ui−1 = Ni−1(u)\Ni−2(u)
with more than one path back to u, or a similar vertex in Vi−1 = Ni−1(v)\Ni−2(v) with
more than one path back to v, is involved in a join in the step i = i0 + k. We call such
vertices u and v bad vertices. Define Zl to be the event that exactly l pairs of vertices
join. The difference between P(Zl ∧ Ji) and P(Ẑl ∧ Ji) is at most P(Bi).

We first show P(Bi) = o(1). Since our subsequent computation of events involves
probabilities that are not o(1), we may then compute with Zl. Let Xi be the random
variable for the number of bad vertices in a join at time i, given that the neighbourhoods
of u and v are separate at time i − 1. Clearly, P(Bi) = P(Xi ≥ 1), which is bounded
above by E(Xi) by Markov’s inequality. Now, each bad vertex is a descendant of an
edge lying in a “bad edge” in the sense of Lemma 2.1, i.e. an edge that create cycles in
the exposition of the neighbourhoods of u and v. So, from the proof of Lemma 2.1, we
deduce that the expected number of bad vertices in Ui−1 is O((d− 1)i−i0+ω(n)), where,
as n tends to infinity, the function ω(n) is allowed to tend to infinity as slow as desired.

Moreover, mimicking the calculations that lead to the expressions for E(Oi−1 | Si)
and E(Ei−1 | Si) in the proof of Lemma 2.3 (equations (4) and 5)), we may easily
determine that the probability that a given bad vertex in Ui−1 is involved in a join at
time i is at most

(d− 1)2 + (d− 1)3

dn
|Vi−1| ∼ 1

n
(d− 1)i+1 ≤ 1√

n
(d− 1)M+1,

where Vi−1 = Ni−1(v). Clearly, the same is true for bad vertices in Vi−1, so that

P(Bi) ≤ E(Xi) = O

(
(d− 1)M+ω(n) 2√

n
(d− 1)M+1

)
= o(1),
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as M is a constant and ω may be chosen to tend to infinity sufficiently slowly.
We now evaluate

∑M−1
k=−M+1 P(Ẑl∧Ji0+k). Observe that each of the terms P(Zl∧Ji0+k),

for −M + 1 ≤ k ≤ M − 1, is equal to

P(Ni0+k−1(u) ∩Ni0+k−1(v) = ∅)[P(Oi0+k = l | Ni0+k−1(u) ∩Ni0+k−1(v) = ∅) +

+ P(Oi0+k = 0 | Ni0+k−1(u) ∩Ni0+k−1(v) = ∅) ×
× P(Ei0+k = l | Oi0+k = 0 ∧Ni0+k−1(u) ∩Ni0+k−1(v) = ∅)].

By our previous lemmas, this is asymptotic to

exp

(
−d(d− 1)2k−2γ(n,d)−2

d− 2

) ((
d(d− 1)2k−2γ(n,d)−2

)l

l!
exp(−d(d− 1)2k−2γ(n,d)−2) +

+

(
d(d− 1)2k−2γ(n,d)−1

)l

l!
exp(−d(d− 1)2k−2γ(n,d)−2 − d(d− 1)2k−2γ(n,d)−1)

)

Hence, if we let ε tend to zero,

P(Zl) ∼
∞∑

k=−∞

(
d(d− 1)2k−2γ(n,d)−2

)l

l!
exp

(
−d(d− 1)2k−2γ(n,d)−1

d− 2

)
×

× (
1 + (d− 1)l exp(−d(d− 1)2k−2γ(n,d)−1)

)
,

as required. ¤
An interesting special case is when l = 1, since this theorem provides the probability

of u and v being joined by a unique geodesic. This probability is given by
∞∑

k=−∞
d(d− 1)2k−2γ(n,d)−2 exp

(
−d(d− 1)2k−2γ(n,d)−1

d− 2

)
×

× (
1 + (d− 1) exp(−d(d− 1)2k−2γ(n,d)−1)

)
.

The probability here is a function of γ(n, d) and oscillates as γ(n, d) varies from 0 to 1.
We include some numerical results in the table below for some values of d, where prob

is the probability of a unique geodesic as γ(n, d) = 0 and osc is the maximum variation
with respect to γ = 0 as γ varies from 0 to 1.

d prob osc
3 0.7213 8.6× 10−6

4 0.6073 1.4× 10−3

5 0.5444 7.9× 10−3

10 0.4411 7.6× 10−2

100 0.3743 0.3

The magnitude of the oscillations depends on d. We justify why it is small when d
is small. Note that the probability of a unique geodesic is equal to

d− 2

d− 1
S(d−1)2

(
−γ(n, d) + log(d−1)2

d

(d− 1)(d− 2)

)
+

+
d− 2

d− 1
S(d−1)2

(
−γ(n, d) + log(d−1)2

d

d− 2

)
,

(7)
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where Sc(x) =
∞∑

m=−∞
cm+x exp(−cm+x), a function with period 1. The classical Poisson

summation formula gives us that

Sc(x) =
∞∑

m=−∞

∫ ∞

−∞
ct+x exp(−ct+x) exp(2πimt) dt.

Setting z = ct+x gives

Sc(x) =
1

log c

∞∑
m=−∞

exp(−2πimx)

∫ ∞

0

exp(−z + 2πim log z/ log c) dz, (8)

and the integral is just Γ(2πim/ log c + 1).
Using properties of the gamma function (see for instance [1]), we have

|Γ(1 + yi)| = |iyΓ(yi)| = |y|
√

π

y sinh(πy)
,

so given m in the previous summation,

|Γ(2πmi/ log c + 1) exp(−2πimx)| = |Γ(2πim/ log c + 1)|

=

(
2π2|m|

log c | sinh(2π2m/ log c)|
)1/2

.
(9)

The term for m = 0 in the sum (8) is independent of x, hence it yields terms
independent of n in equation (7). In the special case d = 3, equation (9) leads to
the following bounds on the other terms of the sum (8). For |m| = 1, the bound is
approximately 4.32× 10−3, for |m| = 2, it is approximately 4.94× 10−6, and for larger
|m| the bounds are even smaller. Similar observations explain the small oscillations
when d is small.

3. Almost geodesic cycles

In the proof of Theorem 1.1 we shall use the following auxiliary result.

Lemma 3.1. Let G ∈ Gn,d and let u, v be vertices chosen independently at random in
G. Consider functions α(n), β(n) such that α(n), β(n) → ∞, α(n) = o(logd−1 n) and
β(n) = o(α(n)). Then a.a.s. every vertex at distance bα(n)c from u or v lies on at
most one uv-path with length less than or equal to logd−1 n + β(n).

Proof. We prove this result for vertices at distance bα(n)c from u, and by a similar
argument the same result holds for vertices at distance bα(n)c from v. As in Section
2, we consider the process of exposing the neighbourhoods of u and v based on the
pairing model. Here, Tα(u), the extended neighbourhood of u, is exposed for bα(n)c
steps while Tβ(v), the extended neighbourhood of v, is exposed for b1

2
logd−1 n− β(n)c

steps. By Lemma 2.1, a.a.s. Tα(u) and Tβ(v) are both trees. Moreover, our choice of
α and β imply that, given a positive integer k and n sufficiently large, we have that
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Tα(u) ∩ Tβ(v) 6= ∅ only if Ni0−k(u) ∩Ni0−k(v) 6= ∅, where, as before, i0 =
⌊

1
2
logd−1 n

⌋
.

By Lemma 2.3, the probability of the latter is asymptotic to

1− exp

(
−d(d− 1)−2k−2γ(n,d)

d− 2

)
,

which approaches zero as k →∞. Since k is arbitrary, Tα(u) ∩ Tβ(v) = ∅ holds a.a.s.
Let Uα be the set of vertices at distance bα(n)c from u. Given a vertex w ∈ Uα,

let Yw be the indicator random variable for the event that w is connected to Tβ(v) by
at least two distinct paths not through Uα of length less than or equal to 1

2
logd−1 n −

α(n)+2β(n)+2. Define Y =
∑

w∈Uα
Yw. It is clear that this lemma follows if we prove

that a.a.s. Y = 0. We shall do this by using

P
(
Y ≥ 1

) ≤
∑

w∈Uα

P
(
Yw = 1

)
,

and by showing that the right-hand side goes to zero as n tends to infinity.
For a fixed w, define the set T ′

w obtained by the exposure of the neighbourhood of w
for 1

2
logd−1 n−α(n)+2β(n)+2 steps. This time, however, the neighbour of w in Tα(u)

is not added to T ′
w at the first step of the process, that is, only the “new” neighbours

of w are exposed. As in Lemma 2.1, we use the term “bad edges” for edges that yield
cycles in T ′

w. Consider the random variable Xw counting the number of “bad edges” in
T ′

w. Then, calculations analogous to the ones in Lemma 2.1 establish that

E(Xw) =

b 1
2

logd−1 n−α(n)+2β(n)+2c∑
s=0

O

(
(d− 1)2s

n

)

= O

(
(d− 1)logd−1 n−2α(n)+4β(n)

n

)
= O

(
(d− 1)4β(n)−2α(n)

)
.

Thus Markov’s inequality implies

P
(
Xw ≥ 1

)
= O

(
(d− 1)4β(n)−2α(n)

)
.

Now, note that

P
(
Yw = 1

)
= P

(
Xw ≥ 1

)
P
(
Yw = 1 | Xw ≥ 1

)
+ P

(
Xw = 0

)
P
(
Yw = 1 | Xw = 0

)
.

We have a bound for the first term in this sum. For the second term, we use the
definition of conditional probability and observe that the event (Yw = 1) ∧ (Xw = 0)
occurs only if there is a pair of distinct paths joining w to Tβ(v) with length at most
1
2
logd−1 n− α(n) + 2β(n) + 2 and with the property that, after they first split, they do

not join again.
So, a bound on P

(
Yw = 1 ∧ Xw = 0

)
may be obtained by counting the number of

possible pairs of distinct paths P and Q joining ui to Tβ(v) with lengths r and s, where
r ≤ s ≤ 1

2
logd−1 n−α(n)+2β(n)+2, and the first j vertices are shared by both paths,
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while the remainder of the paths are internally disjoint. So, if i0 =

⌊
1

2
logd−1 n

⌋
,

P
(
Yw = 1 ∧Xw = 0

)
=

bi0−α(n)+2β(n)+2c∑
s=1

bi0−sc∑
r=1

r−1∑
j=0(

(d− 1)bi0−β(n)c

2

)(
n− o(n)

r + s− j − 2

)(
r + s− j − 2

j

)(
r + s− 2

r − 1

)

× j!(r − 1)!(s− 1)!O

((
(d− 1)

n− o(n)

)r+s−j
)

=

bi0−α(n)+2β(n)+2c∑
s=1

bi0−sc∑
s=1

r−1∑
j=0

O

(
(d− 1)2i0−2β(n)(d− 1)r+s−j

n2

)

= O
(
(d− 1)2β(n)−2α(n)

)
.

Note that the formula holds because there are at most
(
(d−1)bi0−β(n)c

2

)
ways of choosing

two vertices in Tβ(v) and there are
(

n−o(n)
r+s−j−2

)
ways of choosing vertices in the graph

to include in the two paths. Moreover, these vertices can be divided into vertices of
P ∩Q, P −Q and vertices of Q− P in

(
r+s−j−2

j

)(
r+s−2
r−1

)
ways and can then be ordered

to form the paths in j!(r − 1)!(s − 1)! ways. Finally, each edge on the path appears

with probability at most (d−1)
n−o(n)

conditional on the fact that all previous edges on the

path have appeared.
We conclude that

P
(
Yw = 1

)
= P

(
Xw ≥ 1

)
P
(
Yw = 1 | Xw ≥ 1

)
+ P

(
Xw = 0

)
P
(
Yw = 1 | Xw = 0

)

≤ P(
Xw ≥ 1

)
+ P

(
Yw = 1 | Xw = 0

)

= O
(
(d− 1)4β(n)−2α(n)

)
+

O
(
(d− 1)2β(n)−2α(n)

)

1−O ((d− 1)4β(n)−2α(n))

= O
(
(d− 1)4β(n)−2α(n)

)
.

Now, because there are O
(
(d− 1)α(n)

)
vertices at distance bα(n)c of u, we have

P
(
Y ≥ 1

) ≤
∑

w∈Uα

P
(
Yw = 1

)

= O
(
(d− 1)α(n)

)
O

(
(d− 1)4β(n)−2α(n)

)
= O

(
(d− 1)4β(n)−α(n)

)
.

Because β(n) = o(α(n)), this term goes to zero as n tends to infinity and indeed
P
(
Y ≥ 1

) → 0. The lemma follows. ¤

In preparation for proving the second part of Theorem 1.1, it is convenient to deal
with the following simpler goal. To state this we need two definitions. A k-near-
geodesic is a path that is a geodesic between the two vertices at distance k from its
ends. A vertex p on a path P between vertices u and v is said to be a midpoint of P if
|dP (u, p)− dP (v, p)| ≤ 1, where dP denotes the distance along path P .
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Lemma 3.2. Let k be a nonnegative integer. Asymptotically almost surely, for ev-
ery two distinct k-near-geodesics, P and Q, between u and v with midpoints p and q,
respectively,

logd−1(n)− ω(n) < d(p, q) < logd−1(n) + ω(n).

Proof. For the upper bound, we know as in part (i) of the theorem that a.a.s. d(u, v) <
logd−1 n + ω(n), hence there is a sufficiently short path connecting p to q through u or
v.

We turn to the lower bound. Given a function ω(n) satisfying ω(n) → ∞, we know
that a.a.s. d(u, v) ≥ logd−1 n−ω(n) (see (1)). Consider distinct k-near-geodesics P and
Q.

Claim 1: P and Q a.a.s. do not have a vertex in common at distance at least ω(n)
3

from their endpoints.
We prove the claim by contradiction. Suppose without loss of generality that such

a vertex is closer to u on P and let w be the vertex on P at distance bω(n)
3
c from u.

Note that P and Q a.a.s. differ at some vertex or edge after w, since the set of vertices

at distance at most ω(n)
3

from u a.a.s. induces a tree. But then, w lies on at least two
distinct u, v paths with length less than or equal to logd−1 n+log ω(n), which a.a.s. does

not occur by Lemma 3.1 with α(n) = ω(n)
3

and β(n) = log ω(n). (Note that the lengths
of both P and Q are a.a.s. bounded by logd−1 n + log ω(n) because any k-near-geodesic
between u and v has length at most d(u, v) + 4k.) This proves the claim.

Now consider the event that the midpoints p and q of P and Q are at distance
at most logd−1 n − ω(n). One way for this to occur is by the existence of a pq-path
R of length at most logd−1 n − ω(n) using vertices and edges on P ∪ Q only. But
d(u, v) ≥ logd−1 n− ω(n) implies that R does not contain vertices at distance less than

or equal to ω(n)
3

from u or v. Claim 1 shows that no other vertex can be in common.
Thus, a.a.s. there is no short path from p to q using edges on P and Q only.

So consider a geodesic A between p and q containing at least one edge outside P ∪Q.
Using A oriented from p to q as a reference, let vP denote the last vertex on A∩P and
let vQ be the first vertex on A∩Q after vP . The vertices vP and vQ divide the geodesic
into three parts, namely from p to vP , from vP to vQ and from vQ to q. Because P, Q
are k-near-geodesics between u and v for a fixed k and A is a geodesic between p and
q, we must have dA(p, vP ) = dP (p, vP ) and dA(vQ, q) = dQ(vQ, q). So, for p and q to be
at distance at most logd−1 n− ω(n) for some ω(n) →∞, it must be that

dA(vP , vQ) < logd−1 n− dP (p, vP )− dQ(vQ, q)− ω(n). (10)

So, a short path between p and q has to be caused by a short path connecting a vertex
in P to a vertex in Q which is internally disjoint from P ∪ Q. More precisely, there
must exist vertices vP , vQ on P and Q, respectively, and an vP vQ-path R satisfying:

V (R) ∩ V (P ∪Q) = {vP , vQ}, (11)

|R| ≤ logd−1 n− d(p, vP )− d(vQ, q)− ω(n). (12)

Such a configuration is illustrated by Figure 3.
We prove that a.a.s. G does not contain a path R satisfying (11) and (12). We do this

by exposing the neighbourhoods of vertices along P and Q conditional on the particular
paths P and Q being in the graph. By relaxing the condition that P and Q are k-near-
geodesics (but retaining the condition that their length is at most d(u, v) + 4k + ω(n)),
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Figure 3. Path R

we may take the rest of the pairing to be random. We will later argue that the number
of pairs of such paths P and Q is small enough for our argument to work.

Given a vertex pr at distance r from p along P and a vertex qs at distance s from
q along Q, let Xpr,qs be the event that pr and qs are connected by a path of length at
most logd−1 n − r − s − ω(n) which is internally disjoint from P and Q. Define the

random variable YP,Q =
∑dlogd−1 n−ωe

r=0

∑dlogd−1 n−ωe−r
s=0 Xpr,qs , so that YP,Q = 0 only if G

does not contain a path R satisfying (11) and (12) with respect to P and Q.
Once again, we look at the process in which the neighbours of pr and qs are exposed,

then their neighbours are exposed, and so on, but we do not consider the neighbours
of pr and qs on P or Q, so as to expose the sets Ni(pr) and Ni(qs) containing only the
vertices at distance at most i from pr and qs that can be reached by paths internally
disjoint from P and Q. Clearly, pr and qs are joined by a path as in (11) and (12) only
if Ni(pr) and Ni(qs) join in at most 1

2
(logd−1 n − r − s − ω(n)) steps. The probability

of this can be calculated as in the earlier sections, and we conclude that

P(YP,Q ≥ 1) ≤ E(Y )

≤
d 1
2
(logd−1 n−ω)e∑

r=0

d 1
2
(logd−1 n−ω)e−r∑

s=0

P(Xpr,qs)

= 4

d 1
2
(logd−1 n−ω)e∑

r=0

d 1
2
(logd−1 n−ω)e−r∑

s=0

O
(
(d− 1)2( 1

2
(logd−1 n−ω)−r−s)/n

)

= O
(
(d− 1)−ω(n)

)
.

By Lemma 3.1 with α(n) any function tending to infinity sufficiently slowly, and β(n) =
o(α(n)), the number paths of length at most logd−1 n + β(n) between u and v is a.a.s.

at most 2(d− 1)α(n), since this is a bound on the number of vertices at distance bα(n)c
from u. Thus, a.a.s. there are at most γ(n) pairs of such paths between u and v, for
any γ(n) →∞. Let Z denote this asymptotically almost sure event (for some α to be
restricted shortly), and let Z̄ be its complement.

Let Y =
∑

P,Q YP,Q, where the sum is over all pairs of distinct paths between u and

v whose length is at most d(u, v) + 4k + ω(n). Then,

P(Y ≥ 1) = P((Y ≥ 1) ∩ Z̄) + P((Y ≥ 1) ∩ Z)

≤ P(Z̄) +
∑
P,Q

P((YP,Q ≥ 1) ∩ Z)

≤ P(Z̄) + O
(
γ(n)(d− 1)−ω(n)

)
,
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which tends to 0 provided γ(n) = o((d− 1)ω(n)). As a consequence, a.a.s. there are no
configurations satisfying the conditions in (11) and (12). Hence, a.a.s. the inequality
d(p, q) > logd−1 n− ω(n) holds, concluding the proof of the lemma. ¤

We are now ready to prove the main theorem.

Proof of Theorem 1.1. Part (i) of the theorem follows from Corollary 2.4 and equation
(1).

For part (ii), we say that two points on a cycle are diametrically opposite if the
distance between them around the cycle is bl/2c, where the cycle has length l. Note
that, to establish part (ii) of the theorem, it suffices to prove the following, since if
there is a “short-cut” for any two vertices on a cycle, there is a short-cut for a pair of
diametrically opposite ones.
Claim 2: Asymptotically almost surely, there are d paths P1, . . . , Pd connecting u and
v satisfying the following. Each Pi has length at most logd−1 n+ω(n). Furthermore, the
union of any two distinct paths Pi and Pj forms a cycle Ci,j passing through u and v,
whose length li,j satisfies |2 logd−1 n− li,j| < ω(n). Moreover, for every pair of points p
and q that are diametrically opposite on Ci,j, d(p, q) ≥ logd−1 n− logd−1 logd−1 n−ω(n).

We now prove Claim 2. Note that, by (i), for all ε > 0, there is K sufficiently
large that P(d(u, v) > logd−1 n −K) > 1 − ε for all n sufficiently large. Let u1, . . . , ud

and v1, . . . , vd be the neighbours of u and v, respectively. We may imitate the proof
of Lemma 2.3 by first picking neighbours u′ of u and v′ of v, and then exploring the
neighbourhoods of these vertices after deleting u and v from the graph. From the proof
of Lemma 2.3 it is evident that the probability that the shortest path from u′ to v′

avoiding u and v has length at least logd−1 n + k is for sufficiently large n at most
some function that tends to 0 as k increases. It follows that, for all ε > 0, and for
every pair of neighbours ui and vj of u and v respectively, for some sufficiently large
K, there is such a path with length at most logd−1 n+K with probability at least 1− ε
when n is sufficiently large. So, with probability at least 1− dε, we can choose d such
uv-paths P1, . . . , Pd, where the neighbours of u and v on Pi are ui and vi, respectively.
In each case we may select a shortest path with these specifications. Then P1, . . . , Pd

must be (K + 1)-near-geodesics. We show that these paths satisfy the conditions in
the statement of this claim. First note that, by definition, these are geodesics between
vertices of distance K + 1 of its ends. In particular, their length is bounded above by
2(K + 1) + (2(K + 1) + (.u, v)) ≤ logd−1 n + 5K + 4 < logd−1 n + ω(n) for n sufficiently
large.

Also, given any i, j ∈ {1, . . . , d}, with i 6= j, we may assume by Claim 1 that there is
no vertex in the intersection of Pi and Pj at distance larger than ω(n)/3 from both u
and v. For ω growing slowly enough, there is a.a.s. no point in common that is at most
ω(n)/3 from u or v either, since Lemma 2.1 implies that a.a.s. neither u nor v is in a
short cycle. As a consequence, the union Ci,j of the paths Pi and Pj is a cycle. From the
bounds on d(u, v), Ci,j has length at least 2 logd−1 n− 2K and at most 2 logd−1 n + 2K.

To prove the statement about all diametrically opposite points p and q on Ci,j, we
may rework the argument in Lemma 3.2. The claim proved above shows that every
short path of the type we are interested in must use some edge not on P = Pi or Q = Pj.
Arguing as before, we only need to eliminate the existence of A such that (10) holds.
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The same argument shows that, for any fixed such p and q, with YP,Q defined as before,
we again have P(YP,Q ≥ 1) = O

(
(d− 1)−ω(n)

)
.

Now apply this inequality to the O(logd−1 n) pairs of vertices p and q diametrically
opposite on C. Also, put

ω(n) = logd−1 logd−1 n + γ(n).

Then the probability that YP,Q ≥ 1 for at least one of these choices of p and q is
O

(
(d− 1)−γ(n)

)
. Hence, if γ(n) → ∞, we have a.a.s. for all such p and q, d(p, q) ≥

f(n) − logd−1 logd−1 n − γ(n). Replacing γ by ω gives the final statement in Claim 2,
with probability at least 1 − 2ε + o(1). This statement is true for all ε > 0. That
fact implies that the final statement in Claim 2 holds a.a.s. (This can be regarded as
“letting ε → 0 sufficiently slowly”.) Combining this with part (i) proves Claim 2, since,
although there may be different functions at the different occurrences of ω, they can be
made the same. This completes the proof of Claim 2. ¤

4. Final remarks

In this article we have examined the “shape” of random regular graphs. This brings
up related questions.

Our proof of the main theorem can be seen to give more: a.a.s. for every pair of
short (i.e. bounded length) paths, one containing u and one containing v, there is an
almost geodesic cycle containing both of these paths. (Note that two such paths are
a.a.s. disjoint because u and v are typically far apart.) We also show that the paths
referred to in the theorem each contain a geodesic between the two vertices at distance
k from its ends, for any k tending to infinity with n.

Recall that a geodesic cycle C in G is a cycle in which for every two vertices u and
v in C, the distance dG(u, v) is equal to dC(u, v). A significant open problem is to
determine whether in a random d-regular graph, a.a.s. almost all pairs of vertices lie in
a geodesic cycle. It is not even known if at least one geodesic cycle of length asymptotic
to logd−1 n exists a.a.s.

We may also draw conclusions on how “thin” the topological triangles are in random
regular graphs. Consider the proof of Lemma 2.3, which analyses the time at which
two simultaneous breadth-first reaches from u and from v join each other. The proof
is concerned with an accurate estimate of the probability that there are no joins by a
time near i0. It is easy to see from the ideas in the proof that for large K, the second
join is quite likely to occur by time i0 + K, and furthermore that the first two joins are
quite likely to be in branches that diverged, in the breadth first search from u, at time
less than K, and similarly from v. Let u′ and v′ be the points of divergence near u and
v. Then the joins give two paths P and Q from u′ to v′, the shorter of which, say P , is
geodesic, and we can choose another vertex, w, on Q, of distance K from u′, such that
the resulting two subpaths of Q to u′ and v′ from w are both geodesic. Thus u′, v′, w
form a geodesic triangle. By Lemma 3.2 (noting P and Q are 2K-near-geodesics from u
to v), the distance between the midpoints of P and Q is a.a.s. at least logd−1(n)−ω(n),
where ω(n) is any function tending to ∞. Hence the midpoint p of P a.a.s. has distance
at least 1

2
logd−1 n− ω(n) from the union of the other two sides of the geodesic triangle

u′, v′, w. So this triangle is not “thin.” The probability in the above statements tends
to 1 if we let K →∞ sufficiently slowly.
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Recall also the definition of δ-hyperbolicity from Section 1. Clearly, by taking four
points almost equally spaced around a k-roughly geodesic cycle, we see that a graph
containing such a cycle of length t cannot be (t/4− k− c)-hyperbolic, for c some small
constant (c = 0 if t is divisible by 4). This can be strengthened slightly by using the
vertices {u′, v′, p} defined as above, and with the midpoint of Q as a fourth vertex.
This shows that a random d-regular graph, for d ≥ 3, is a.a.s. not δ-hyperbolic for
δ = (logd−1 n)/2 − ω(n). For an upper bound, it is obviosuly δ-hyperbolic for δ equal
to half of the diameter of the graph, which is (logd−1 n)/2 + O(log log n) by the main
result of [5].

Finally, it would be interesting to see to what extent the geometric properties we have
addressed in this paper are preserved if the model of regular graphs changes. Particular
models of interest might be random Cayley graphs, random lifts of regular graphs, and
one can consider also some deterministic models of expanders.
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