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Abstract. We consider graph densities in countably infinite graphs. The inde-
pendence density of a finite graph G of order n is its proportion of independent
sets to all subsets of vertices, while the chromatic density is its proportion of
proper n-colourings to all mappings from vertices of G to {1, 2, . . . , n}. For both
densities, we extend their definition to countable graphs via limits of chains of
finite graphs. We show that independence densities exist for all chains, and are
unique regardless of which limiting chain is used. We prove that independence
densities are always rational; in fact, we prove the stronger fact that the closure
of the set of possible values is contained in the rationals. In contrast, we show
that the infinite random graph contains chains realizing all real numbers in [0, 1]
as a chromatic density.

1. Introduction

An approach to generalizing certain finite graph parameters to infinite graphs
is to consider graph densities. Broadly speaking, graph densities are normalized
ratios of certain graph parameters. A well-known example is the edge density, or
proportion of edges in a graph to all two-element sets of vertices. For an infinite
graph, define its upper density as the infimum of all reals α such that the finite
subgraphs with edge density greater than α have bounded order. As a corollary of
the Erdős-Stone theorem from extremal graph theory (see, for example, [9]), the
upper density of a graph is a superparticular number ; that is, a number in the set

{1 − 1/n : n ≥ 1} ∪ {1}.
Other graph densities include homomorphism density [13], cop density [3] and
limiting survival rates in firefighter games [4, 16].

A countably infinite graph G may be expressed as the limit of a chain of finite
graphs. Suppose we are given a sequence of finite induced subgraphs C = (Gn :
n ≥ 0) of G with the properties that Gn is an induced subgraph of Gn+1, and

V (G) =
∞
⋃

n=0

V (Gn).
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We write limn→∞ Gn = G, and say that G is the limit of the chain C. As we will
see, limits are powerful tools for proving density results for infinite graphs.

For a non-negative parameter ρ defined for finite graphs, it is natural to extend
the definition of ρ to countable graphs by continuity :

ρ
(

lim
n→∞

Gn

)

= lim
n→∞

ρ(Gn).

If the limit graph is a finite graph, then the chain is eventually constant, and the
limit exists. However, in the infinite case, limits may either depend on the chain
used, fail to exist, or be infinite. We only consider cases where the limit exists;
further, we consider parameters where ρ(Gn) is bounded. As with edge densities,
we first normalize the parameter ρ (in some way) so that its value is in the interval
[0, 1].

We consider two examples of such parameters in the present work: the indepen-
dence and chromatic densities. The independence density of a finite graph G of
order n is its proportion of independent sets to all subsets of vertices, while the
chromatic density is its proportion of proper n-colourings to all mappings from
V (G) to {1, 2, . . . , n}. We show in Theorem 2.2 that independence densities exist
for all chains, and that independence densities are unique regardless of which limit-
ing chain is used. We prove in Theorem 2.4 the surprising result that independence
densities are always rational; in fact, we prove a stronger result that the closure
of the set of possible values is contained in the rationals. In contrast to these re-
sults the main result of Section 3 is Theorem 3.1, where we show that by choosing
different chains the infinite random graph realizes all real numbers in [0, 1] as a
chromatic density.

Throughout, all graphs we consider are undirected, simple, and countable (that
is, either finite or countably infinite). As we only discuss countably infinite sets,
we refer to the cardinality of an infinite set by ∞.

2. Independence Density

Let I(G) denote the set of independent sets of a graph G (including the empty
set), and let i(G) = |I(G)|. Several authors have studied the number of indepen-
dent sets in graphs arising from various families (see, for example, [11, 12, 14, 18]).
The parameter i(G) is sometimes called the Fibonacci number of a graph [15],
since i(Pn) = F (n + 2), where Pn is the path with n vertices and F (m) is the mth
Fibonacci number. We note in passing that i(G) is the evaluation of the indepen-
dence polynomial of G at the value 1; see [6, 7, 8] for more on the independence
polynomial. If G is a graph of order n, then we have the tight bounds

n + 1 ≤ i(G) ≤ 2n.

As is well-known (see [15]), if G is a spanning subgraph of H, then

i(H) ≤ i(G), (2.1)
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and if G ∪ H is the disjoint union of G and H, then

i(G ∪ H) = i(G)i(H). (2.2)

We define the independence density of graph G of order n to be

id(G) =
i(G)

2n
.

Note that id(G) is a rational in (0, 1]. We may view id(G) as the probability of
choosing an independent set (uniformly at random) from all subsets of V (G). The
following lemma follows from (2.1) and (2.2).

Lemma 2.1. Let G and H be finite graphs.

(1) If G is a subgraph of H, then id(H) ≤ id(G).
(2) If G and H are vertex disjoint graphs, then id(G ∪ H) = id(G)id(H).

Given a chain C = (Gn : n ≥ 0) whose limit is G, we define the independence
density of G relative to C by

id(G, C) = lim
n→∞

id(Gn)

(assuming the limit exists, which we will show in Theorem 2.2). An immediate
but important consequence of Lemma 2.1 is that independence densities relative
to chains always exist and are independent of the chain used.

Theorem 2.2. Let G be a countable graph.

(1) For all chains C with limit G, id(G, C) exists.
(2) Let C = (Gn : n ≥ 0) and C′ = (Hn : n ≥ 0) be two chains with the same

limit graph G. Then

id(G, C) = id(G, C′).

Proof. Item (1) follows from Lemma 2.1 (1), as the independence densities of a
chain form a non-increasing, bounded set in [0, 1]. For (2), fix ε > 0 a real number.
Let I = id(G, C) and I ′ = id(G, C′). There is an n ≥ 0 such that id(Gn) ≤ I + ε.
We have that Gn is an induced subgraph of Hk for some k ≥ 0. This implies that

I ′ ≤ id(Hk) ≤ id(Gn) ≤ I + ε.

By symmetry, I ≤ I ′ + ε. �

Theorem 2.2 simplifies the theory of independence densities considerably, since
we may work with any chain and arrive at the same limit. Hence, we drop reference
to chains, and simplify refer to the independence density of G, written id(G).

The independence densities of the infinite complete and empty graphs are 0
and 1, respectively. For a ray (that is, a one-way infinite path), the independence
density is 0 as F (n + 2)/2n goes to zero. The infinite star K1,∞ is the limit of the
chain of finite stars K1,n, which has independence density

(2n + 1)/2n+1 = 1/2 + 2−n−1 .

Hence, id(K1,∞) = 1/2.
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We emphasize that independence densities are insensitive to adding independent
sets to the graph. Further, graphs which appear considerably sparser than each
other can have the same independence density: for this, consider a countably infi-
nite complete graph and the graph formed by taking the disjoint union of countably
many edges.

Nevertheless, we think independence densities have interesting properties, as
our next result demonstrates. Our main result considers the possible values for
independence densities. In a non-empty finite graph G, by Lemma 2.1 (1) we have
that

id(G) ≤ id(K2) =
3

4
,

so there are no real numbers in (3/4, 1) that are independence densities. Other
such gaps exist by considering graphs with at most n edges, where n ≥ 2.

Define

S = {id(G) : G is a countable graph},
and

S ′ = {id(G) : G is a finite graph}.
Then S ′ ⊆ S, 0 ∈ S \ S ′, and by Lemma 2.1 and the continuity of limits, S forms
a monoid with 0 with multiplication defined by

id(G)id(H) = id(G ∪ H).

The closures (in the usual topology of R) of S and S ′, written S and S ′, respectively
are equal. (To see this, suppose that G is an infinite graph. Then for all ε > 0
there is a finite induced subgraph H of G with |id(H)− id(G)| < ε.)

A graph G containing an infinite matching has id(G) = 0. In fact, the size of a
maximum matching plays an important (albeit unexpected) role for independence
densities. The matching number of G, written µ(G) (also sometimes called α1(G)),
is the cardinality of a maximum matching in G. If there is an infinite matching in
G, then we write µ(G) = ∞.

Theorem 2.3. For a countable graph G, if id(G) > 0, then µ(G) < ∞, and

(µ(G) + 1)2−2µ(G) ≤ id(G) ≤
(

3

4

)µ(G)

.

In particular, id(G) = 0 if and only if µ(G) = ∞.

Proof. The upper bound follows by noting that by Lemma 2.1(1) that id(G) is
maximized in the case G consists of a disjoint union of µ(G) edges. For the lower
bound, define A to be the set of 2µ(G) = 2m vertices in a fixed maximum matching
M with m edges, and B = V (G)\A. Observe that B is an independent set. Let
(Gn : n ≥ 0) be a chain with G0 as the subgraph induced by A, and suppose
that Gn has N vertices. Considering vertices in B ∩ V (Gn) supplies (2N−2m)-
many independent sets. For each edge of our fixed matching, we show that there
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are (2N−2m)-many additional independent sets. This will give us (m + 1)2N−2µ(G)

independent sets in total, proving the lower bound.
Fix an edge e = uv of M . If e has an endpoint with no neighbours in B,

then that endpoint can be combined with any subset of B, forming (2N−2m)-many
independent sets. Otherwise, both u and v have at least one neighbour in B. If
the endpoints had different neighbours, then a larger matching could be formed, so
the endpoints must have a unique common neighbour w and no other neighbours.
We can form an independent set by combining either endpoint with any subset of
B\{w}, supplying the desired 2N−2m independent sets. �

Our main result of this section is the following theorem, which shows that the
closure of the set of independence densities is contained in the rationals.

Theorem 2.4. For any fixed irrational q, there exists ε = ε(q) > 0 such that
|q − x| ≥ ε for all x ∈ S, and so S ⊆ Q ∩ [0, 1].

The following corollary follows immediately from Theorem 2.4.

Corollary 2.5. The independence density of a graph is rational.

Before we move to the proof of Theorem 2.4, we need one more lemma. For
a finite graph G, define F (G) to be the family of graphs (not necessarily finite)
consisting of G and an independent countable set of vertices (which may be joined
to vertices in G). A graph H ∈ F (G) is called a G-flower or flower. We first show
the following key observation that independence densities of G-flowers are bounded
away from any irrational number.

Lemma 2.6. For any irrational q ∈ (0, 1) and any finite graph G, there exists
ε = ε(q, G) > 0 such that |q − id(H)| ≥ ε for all H ∈ F (G).

Proof. Fix a graph H ∈ F (G). For each subset S of V (G), let xS be the number
of vertices in V (H) \ V (G) that are joined to every vertex of S and no vertex
in V (G) \ S. Hence, we partition the set of vertices outside of G into (2|V (G)|)-
many classes, with membership in a class determined by their adjacency to vertices
of G. Thus, we may represent H ∈ F (G) by the vector xH with (2|V (G)|)-many
coordinates. (For example, K1,n ∈ F (K1) has a representation of (n, 0).) The
number of independent sets of H is

∑

I∈I(G)

2
P

{S⊆V (G):S∩I=∅} xS .

Hence,

id(H) =

∑

I∈I(G) 2−
P

{S⊆V (G):S∩I 6=∅} xS

2|V (G)|

If xS = ∞ (that is, in the case there are infinitely many vertices joined to S and
no vertex outside S) then we remove all terms in the (outermost) sum involving
xS.

For H with vector xH for which id(H) > q, then we have two possible situations.
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(1) One coordinate of xH may be increased and the resulting independence
density is at least q.

(2) No coordinate can be increased (perhaps some of them are already ∞)
without the resulting independence density becoming smaller than q. We
call such vectors saturated.

Dually, if we have a vector xH for which id(H) is smaller than q, we can have
two possible situations.

(1) Some finite coordinate may be decreased (perhaps to 0) and the resulting
independence density is at most q.

(2) Decreasing any finite coordinate yields an independence density greater
than q. We call such vectors minimal.

In the case that id(H) > q where its corresponding vector is not saturated,
we can increase the coordinates of xH , keeping the independence density above
q, until we reach a graph corresponding to a saturated vector (this vector may
have all coordinates equal to ∞, but is still saturated by definition). Since for
any saturated or minimal vector we obtain a positive rational value for id(H), it is
enough to show that the number of such vectors is finite. If this is indeed the case,
then we may define

ε(q, G) = min {|q − id(H)|} > 0,

where the minimum is taken over all graphs that can be represented as a saturated
or minimal vector. (If the number of such vectors is not finite, then the minimum
becomes an infimum and it is possible that ε(q, G) = 0, which implies that we can
get as close to q as we want.)

We now show there are only finitely many saturated or minimal vectors. We
first consider saturated vectors. Since there are a finite number of possibilities to
place infinities in any saturated vector (exactly 22|V (G)|

), we may fix these positions
arbitrarily in advance, and show that the number of vectors of this type is finite.
For a contradiction, suppose that for some configuration of infinities, there is an
infinite number of saturated vectors. We need to focus on finite coordinates only,
so let us rearrange coordinates of our saturated vectors as follows: vector Vk has
the following form:

Vk = (x1
k, x

2
k, . . . , x

l
k,∞,∞, . . . ,∞),

where xi
k are finite nonnegative integers. Since we have an infinite family of vectors,

there must be at least one coordinate xi
k (for some 1 ≤ i ≤ l) that is not bounded.

Without loss of generality, we can assume that there is a sequence of vectors (V 1
k )∞k=1

such that x1
k+1 > x1

k for k ≥ 1. Since we restrict ourselves to saturated vectors, no
two vectors can be different on the first coordinate only. This implies that there
are infinitely many different configurations (x2

k, x
3
k, . . . , x

l
k) that we encounter in

the sequence (V 1
k )∞k=1, so at least one more coordinate xi

k is not bounded (for some
2 ≤ i ≤ l). Without loss of generality, we suppose that x2

k is not bounded and so

there exists a subsequence (V 2
k )∞k=1 of (V 1

k )∞k=1 such that xi
k+1 > xi

k for k ≥ 1 and
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i ∈ {1, 2}. Using the fact that no saturated vector can be obtained by increasing
some coordinates of some other saturated vector, we may continue constructing

subsequences to show the existence of a sequence of saturated vectors (V l
k)∞k=1 such

that xi
k+1 > xi

k for k ≥ 1 and i ∈ {1, 2, . . . , l}. As V l
2 is saturated it follows that

V l
1 is not (one cannot increase l coordinates of V l

1 to get another saturated vector),
which gives a contradiction.

The proof that for a given q and G, there are finitely many minimal vectors
is symmetric and thus, is omitted. (For that, one can use the symmetry that
no minimal vector can be obtained by decreasing some coordinates of some other
minimal vector.) �

Proof of Theorem 2.4. Fix an irrational q ∈ [0, 1]. It follows from Lemma 2.6
that for every finite graph G, there exists ε = ε(q, G) > 0 such that |q− id(H)| ≥ ε
for any H ∈ F (G). However, there might be a sequence of graphs (Gi)i∈N such
that ε(q, Gi) tends to zero as i goes to infinity. We will show that this is impossible
which finishes the proof of the theorem.

Suppose G is a graph with id(G) close to q; without loss of generality, assume
that id(G) > 0. Recall that by Theorem 2.3, id(G) ≤ (3/4)µ(G). Hence, if we want
to be close to q, we cannot have µ(G) ≥ kq, where

kq =

⌈

log q

log(3/4)

⌉

+ 1.

Therefore, to be close to q we need to have some graph G of order at most 2kq

as a subgraph and all other vertices are attached to G. (If there is a vertex with
distance at least two from G, then G has a larger matching. Similarly, if there is
another connected component, we can increase the size of the matching. Isolated
vertices in G may be removed without changing the independence density.) Since
we have a finite number of graphs on at most 2kq vertices, we define

ε(q) = min{ε(q, G)}
where the minimum is taken over all G with at most 2kq vertices. �

An interesting problem is whether S−S ′ = {0}. One approach to this problem is
to classify the independence number of countable graphs with given finite matching
number. We completed this classification in the case µ(G) is 1 or 2; in each case,
the independence numbers for all countable graphs correspond to those for finite
graphs. For example, if µ(G) = 1, then

id(G) ∈ {2−1 + 2−A : A ≥ 2} ∪ {2−1}.
A tedious (and so omitted) case analysis shows that if µ(G) = 2, then id(G) ∈
T1 ∪ T2 ∪ T3 ∪ T4, where

T1 = {1/4, 3/16, 7/32},
T2 = {2−2 + 2−A : A ≥ 3},

T3 = {2−2 + 2−A + 2−B : 3 ≤ A ≤ B},
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and

T4 = {2−2 + 2−A + 2−B + 2−C : 3 ≤ A ≤ B ≤ C ≤ A + B − 2}.
We note that existence and uniqueness of independence density for infinite graphs

generalizes to many other graph parameters. A class X of graphs closed under
isomorphism is hereditary if it is closed under taking induced subgraphs. For
example, the class of independent sets, the class of cliques, k-colourable graphs
with k ≥ 2 fixed, perfect graphs, or H-free graphs with H a fixed graph are all
hereditary. For X a hereditary class of graphs, define Xd(G) to be the proportion
of subsets which induce a graph in X, and extend this definition to countable
graphs via chains. It is not hard to see that Xd(G) exists and is unique for all
countable graphs. We will consider the Xd(G) parameters for various classes in
the sequel.

3. Chromatic Densities

We now consider the chromatic density of a graph. For a finite graph G of order
n, let c(G, x) denote the chromatic polynomial (or chromial) of G, and consider
c(G, n) the number of proper n–colourings of G. It is evident that c(G, n) ≤ nn

with equality if and only if G has no edges. We define the chromatic density of G
by

cd(G) =
c(G, n)

nn
.

The parameter cd(G) may be viewed as the probability that a random mapping
from V (G) to {1, 2, . . . , n} is a proper n-colouring (which is a special case of ho-
momorphism density; see [13]).

Given a chain of finite graphs C = (Gn : n ≥ 0) with limit G, we define the chro-
matic density of G relative to the chain C, written cd(G, C), to be limn→∞ cd(Gn),
assuming the limit exists. Other notions of limits of chromials (unrelated to our
definition) were studied in [1, 17].

Regardless of the chain used, the infinite complete graph and its complement,
have chromatic densities 0 and 1, respectively. A tree of order n has n(n − 1)n−1

many proper n–colourings, and hence, has chromatic density
(

n−1
n

)n−1
. If we con-

sider a chain C of trees Tn of order n with limit T, then

cd(T, C) = lim
n→∞

(

n − 1

n

)n−1

=
1

e

(and hence, cd(T, C) is irrational). Similarly, the limit of a chain of k-trees (see
[5] for a definition) has chromatic density (1/e)k. However, other chains in a tree
may have different limits. For example, index the vertices of the ray by the natural
numbers, and define Gn inductively as follows. Let G0 be the subgraph induced
by {0}. Assume that Gn is defined, finite, and V (Gn) contains {0, 1, . . . , n}. Define
Gn+1 to consist of the smallest order path in the ray containing V (Gn) ∪ {n + 1},
along with 2|V (Gn)|-many isolated nodes (chosen from vertices with index greater
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than n + 3). Then the ray is the limit of (Gn : n ≥ 0) and has chromatic density 1
relative to this chain.

Define the probability space G(N, p) to be graphs with vertex set of positive
integers, and each distinct pair of integers is joined independently with probability
p ∈ (0, 1). We will call this space the infinite random graph. Erdős and Rényi [10]
discovered the following theorem.

Theorem 3.1. For p ∈ (0, 1), with probability 1 the graph G(N, p) is unique up to
isomorphism.

Define a graph to be existentially closed or e.c. if all finite disjoint sets of vertices
A and B (one of which may be empty), there is a vertex z joined to all of A and to
no vertex of B. The proof of Theorem 3.1 follows by proving that with probability
1, G(N, p) is e.c., and then proving that any two e.c. graphs are isomorphic. For
more on e.c. graphs, see [2, 9].

The unique isomorphism type of the infinite random graph is written R. We
exploit the following explicit representation of R as a limit graph. For a graph G,
for each non-empty subset S of V (G), add a new vertex joined to S and to no other
vertices. The resulting graph contains G as an induced subgraph. We may iterate
this process, to form a chain of graphs (Gn : n ≥ 0) whose limit is e.c., and so is
isomorphic to R. (Choose n large enough such that Gn contains both A and B. A
vertex joined to A and not B may be found in Gn+1.)

Our main theorem of this final section demonstrates that chromatic density
depends heavily on the chain used. Unlike the results from Theorem 2.4, R realizes
all real numbers in [0, 1] as a chromatic density.

Theorem 3.2. For all r ∈ [0, 1], there is a chain Cr = (Rn : n ≥ 0) of finite graphs
whose limit is R, with cd(R, Cr) = r.

In order to prove the result, we first prove a sequence of three lemmas. A vertex
is universal if it is joined to all others.

Lemma 3.3. Given a graph G of order n, let G+ be the graph formed by adding
a universal vertex to G. If cd(G) = x, then

cd(G+) = (1 + O(1/n))(x/e).

Proof. We have that

cd(G+) =
(n + 1)c(G, n)

(n + 1)n+1

=
c(G, n)

nn
(1 + 1/n)−n

= x exp
(

1/n + O(1/n2)
)−n

= (x/e) exp (−O(1/n))

= (1 + O(1/n))(x/e). 2
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In particular, by adding k universal vertices in succession, we divide the chro-
matic density by a factor of ek (with vanishing error term). Hence, we can make
the chromatic density as close to 0 as we like.

Lemma 3.4. Form G(−m) by adding an independent set of cardinality m to a
finite graph G of order n. If m � n (with both m and n tending to infinity), then
cd(G(−m)) = 1 + o(1).

Proof. We have that

cd(G(−m)) =
(m + n)mc(G(−m), n + m)

(n + m)n+m

≥ c(Kn, n + m)

(m + n)n

=
(m + n)!/m!

(m + n)n
(3.1)

Using Stirling’s formula (that is, n! = (1+o(1))
√

2πn
(

n
e

)n
) twice, (3.1) is asymp-

totically equal to

(

√

1 + n/m
)

e−n

(

m + n

m

)m

= (1 + o(1))e−n
(

1 +
n

m

)m

,

which in turn is asymptotically equal to 1. �

Lemma 3.5. Adding one edge e = uv to a finite graph G of order n does not
change the chromatic density by more than 1/n.

Proof. By the deletion-contraction rule for the chromial,
∣

∣

∣

∣

c(G, n)

nn
− c(G + uv, n)

nn

∣

∣

∣

∣

=
c(G/uv, n)

nn

≤ nn−1

nn

=
1

n
. 2

Proof of Theorem 3.2. Fix r ∈ [0, 1). Let R0 = K1, and assume Rn is defined
for n ≥ 0. First, for each subset S of vertices of Rn add a vertex xS joined only
to the vertices of S; call the resulting graph Gn. Doing this for all S and for all
n will ensure that the resulting limit graph is e.c., and so is isomorphic to R. We
note that the graph Gn is an auxiliary step in the construction of Rn+1.

Now cd(Gn) = y for some rational y in (0, 1]. The idea for the remainder of the
proof is to add an independent set to Gn giving a graph with chromatic density
above r, and then add edges to bring the chromatic density to within distance 1/n
of r. Now, first form Gn(−m) from Gn for some large m so that cd(Gn(−m)) ≥ r
(using Lemma 3.4). By Lemma 3.5 adding an edge to Gn(−m) decreases the
chromatic density by at most 1/n (in fact, since n < |V (Gn)|, the chromatic density
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decreases by at most 1/|V (Gn)| < 1/n). Lemma 3.3 implies that adding all edges
will decrease the chromatic density by dividing by em, which we may make as close
to 0 as we like by making m large enough. Hence, we may obtain a graph Rn+1 by
adding some (deterministic but unspecified) number of edges to Gn(−m) so that

|cd(Rn+1) − r| ≤ 1/n.

The limit of the chain Cr = (Rn : n ≥ 1) is e.c. as we already made all extensions
of Rn in the graph Gn, and Rn is an induced subgraph of Rn+1. Hence, the limit
of the chain is indeed the infinite random graph R and cd(R, Cr) = r.

In the case r = 1, proceed similarly as before. However, to form Rn+1 in this
case, take m sufficiently large that cd(Gn(−m)) > 1 − 1/n. �
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