
Cleaning random d-regular graphs with Brooms

Pawe l Pra lat ∗

Abstract

A model for cleaning a graph with brushes was recently introduced. Let α =
(v1, v2, . . . , vn) be a permutation of the vertices of G; for each vertex vi let N+(vi) =
{j : vjvi ∈ E and j > i} and N−(vi) = {j : vjvi ∈ E and j < i}; finally let
bα(G) =

∑n
i=1 max{|N+(vi)|−|N−(vi)|, 0}. The Broom number is given by B(G) =

maxα bα(G).
We consider the Broom number of d-regular graphs, focusing on the asymptotic

number for random d-regular graphs. Various lower and upper bounds are proposed.
To get an asymptotically almost sure lower bound we use a degree-greedy algorithm
to clean a random d-regular graph on n vertices (with dn even) and analyze it using
the differential equations method (for fixed d). We further show that for any d-
regular graph on n vertices there is a cleaning sequence such at least n(d + 1)/4
brushes are needed to clean a graph using this sequence. For an asymptotically
almost sure upper bound, the pairing model is used to show that at most n(d +
2
√
d ln 2)/4 brushes can be used when a random d-regular graph is cleaned. This

implies that for fixed large d, the Broom number of a random d-regular graph on n
vertices is asymptotically almost surely n

4 (d + Θ(
√
d)).

1 Introduction

The cleaning model, introduced in [13], is a combination of the chip-firing game and edge-
searching on a simple finite graph. Initially, every edge and vertex of a graph is dirty and
a fixed number of brushes start on a set of vertices. At each step, a vertex v and all its
incident edges which are dirty may be cleaned if there are at least as many brushes on v
as there are incident dirty edges. When a vertex is cleaned, every incident dirty edge is
traversed (i.e. cleaned) by one and only one brush, and brushes cannot traverse a clean
edge. See Figure 1 for an example of this cleaning process. The initial configuration has
only 2 brushes. The solid edges are dirty and the dotted edges are clean. The circle
indicates which vertex is cleaned next.

In [2, 9, 10, 13, 15, 17], the focus was on determining the minimum number of brushes
required. To this end, a different but equivalent formulation of the problem was intro-
duced. Let α = (v1, v2, . . . , vn) be a permutation of the vertices of G; for each vertex vi
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Figure 1: An example of the cleaning process.

let (vi) = {j : vjvi ∈ E and j > i} and N−(vi) = {j : vjvi ∈ E and j < i}; finally let

bα(G) =

n
∑

i=1

max{|(vi)| − |N−(vi)|, 0}.

The brush number is given by b(G) = minα bα(G).
In this paper, we concentrate on the Broom number, B(G) = maxα bα(G), considered

in [14]. This is the maximum number of brushes needed to clean the graph where every
brush has to clean at least one edge. We are interested in the asymptotic possible number
of brushes that can be used to clean d-regular subject to this constraint, and mainly
random d-regular (finite, simple) graphs.

In Section 2 we introduce the formal definitions for the cleaning process and also
include a description of the pairing model which is used in the results on random regular
graphs, instead of working directly in the uniform probability space.

We first observe that if d = 2, then the Broom number of a random d-regular graph
on n vertices is asymptotically almost surely n − (1/4 + o(1)) logn; see Section 3. Un-
fortunately, this is the only case where our upper and a lower bounds match; for other
values of d we provide bounds only.

In Section 4 we describe some general upper bounds for the Broom number following
from both expansion properties of random d-regular graph and direct calculations based
on the pairing model. In particular, we show that for random d-regular graphs on n
vertices, the maximum number of brushes needed is, asymptotically almost surely, at
most n

4
(d + 2

√
d ln 2).

In Section 5 we show that for d-regular graphs on n vertices, there is a cleaning
sequence such that n(d + 1)/4 brushes are needed to clean the graph using this sequence
if d is odd, and n

4
(d + 1 − 1

d+1
) brushes are needed if d is even. These bounds are tight.

In order to improve this for a random case, an asymptotically almost sure bound on the
Broom number is obtained by considering a degree-greedy algorithm to clean the graph
and then using the differential equation method, studied in [21], to find the asymptotic
possible number of brushes that can be used. We also consider the case of large d, and
show that the Broom number in this case is roughly nd/4.

Note that the paper uses similar approaches that were used in [2], where the problem
of finding the minimum number of brushes needed to clean random d-regular graph was
considered. Some necessary modifications are straightforward, however, sometimes non-
trivial adjustments and new ideas are needed. For example, an upper bound requires a
new approach; we use the fact that a large value of the Broom number implies that there

2



is at least one large induced subgraph that is sparse comparing to the expected number
of edges. This is, asymptotically almost surely, not the case for a random graph.

2 Definitions

The following cleaning algorithm and terminology were recently introduced in [13].
Formally, at each step t, ωt(v) denotes the number of brushes at vertex v (ωt : V →

N ∪ {0}) and Dt denotes the set of dirty vertices. An edge uv ∈ E is dirty if and only if
both u and v are dirty: {u, v} ⊆ Dt. Finally, let Dt(v) denote the number of dirty edges
incident to v at step t:

Dt(v) =

{

|N(v) ∩Dt| if v ∈ Dt

0 otherwise.

Definition 2.1 The cleaning process P(G, ω0) = {(ωt, Dt)}Tt=0 of an undirected graph
G = (V,E) with an initial configuration of brushes ω0 is as follows:

(0) Initially, all vertices are dirty: D0 = V ; set t := 0

(1) Let αt+1 be any vertex in Dt such that ωt(αt+1) ≥ Dt(αt+1). If no such vertex exists,
then stop the process (T = t), return the cleaning sequence α = (α1, α2, . . . , αT ),
the final set of dirty vertices DT , and the final configuration of brushes

ωT

(2) Clean αt+1 and all dirty incident edges by traversing a brush from αt+1 to each dirty
neighbour. More precisely, Dt+1 = Dt \ {αt+1}, ωt+1(αt+1) = ωt(αt+1) − Dt(αt+1),
and for every v ∈ N(αt+1)∩Dt, ωt+1(v) = ωt(v)+1, the other values of ωt+1 remain
the same as in ωt.

(3) t := t + 1 and go back to (1)

Note that for a graph G and initial configuration ω0, the cleaning process can return
different cleaning sequences and final configurations of brushes. It was shown (see [13,
Theorem 2.1]), however, that the final set of dirty vertices is determined by G and ω0.
Thus, the following definition is natural.

Definition 2.2 A graph G = (V,E) can be cleaned by the initial configuration of
brushes ω0 if the cleaning process P(G, ω0) returns an empty final set of dirty vertices
(DT = ∅).

The brush number, b(G), is the minimum number of brushes needed to clean G, that
is,

b(G) = min
ω0:V→N∪{0}

{

∑

v∈V
ω0(v) : G can be cleaned by ω0

}

.

Similarly, bα(G) is defined as the minimum number of brushes needed to clean G using
the cleaning sequence α.
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It is clear that for every cleaning sequence α, bα(G) ≥ b(G) and b(G) = minα bα(G).
(The last relation can be used as an alternative definition of b(G).) In this paper we
focus on the worst-case scenario, that is, we try to determine the worst cleaning sequence
which uses as many brushes as possible (see [14] for more). This, of course, gives an upper
bound for any cleaning sequence.

Definition 2.3 Let the Broom number, B(G), of a given graph G = (V,E) be the maxi-
mum number of brushes needed to clean G using the cleaning sequence α, that is,

B(G) = max
α

bα(G).

For example, we may clean C8 = (v1, v2, . . . , v8) using only two brushes, using cleaning
sequence γ = (v1, v2, . . . , v8). In fact, b(C8) = bγ(C8) = 2. However, we could also clean
C8 using eight brushes and cleaning sequence α = (v1, v3, v5, v7, v2, v4, v6, v8). That is,
bα(C8) = 8. Clearly the maximum number of brushes one could use to clean any graph
G is |E(G)|: each brush cleans exactly one edge. Consequently, B(C8) = bα(C8) = 8.

In general, it is difficult to find b(G). (In [9], the cleaning process was translated
into the BALANCED VERTEX-ORDERING problem, which was known from [4] to be NP-
complete. The complexity of computing B(G) is still unknown.) However, bα(G) can be easily
computed. For this, it seems better not to choose the function ω0 in advance, but to run the
cleaning process in the order α, and compute the initial number of brushes needed to clean a
vertex. We can adjust ω0 along the way

ω0(αt+1) = max{2Dt(αt+1) − deg(αt+1), 0}, (1)

for t = 0, 1, . . . , |V |−1, since that is the number of brushes we have to add over and above what
we get for free. Alternatively, (1) can be rewritten as

ω0(αt+1) = max{|α(αt+1)| − |N−
α (αt+1)|, 0}, (2)

where N−
α (αt+1) denotes the left-neighbours of αt+1 in the cleaning sequence α: the set of

vertices cleaned before αt+1; N+
α (αt+1) is defined similarly. This will be a useful representation

in later sections.

The model presented in this paper is one where the edges are continually recontaminated,
say by algae, so that cleaning is regarded as an on-going process. Ideally, the final configuration
of the brushes, after all the edges have been cleaned, should be a viable starting configuration
to clean the graph again. We know that this is possible, even with the least number of brushes.
The following theorem has been proven in [13] (Theorem 2.3) although the statement presented
here is a little bit stronger focusing on the cleaning sequence that can be used.

Theorem 2.4 ([13]) The Reversibility Theorem

Given the initial configuration ω0, suppose G can be cleaned using cleaning sequence α =
(α1, α2, . . . , αn) and yielding final configuration ωn, n = |V (G)|. Then, given initial configu-
ration τ0 = ωn, G can be cleaned using cleaning sequence α = (αn, αn−1, . . . , α1) and yielding
the final configuration τn = ω0. Moreover, bα(G) = bα(G).
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When a graph G is cleaned using the cleaning process described in Definition 2.1, each edge
of G is traversed exactly once and by exactly one brush. Note that no brush may return to a
vertex it has already visited, motivating the following definition.

Definition 2.5 The brush path of a brush b is the path formed by the set of edges cleaned by
b.

Our main results refer to the probability space of random d-regular graphs with uniform
probability distribution. This space is denoted Gn,d, and asymptotics (such as ‘asymptotically
almost surely’, which we abbreviate to a.a.s.) are for n → ∞ with d ≥ 2 fixed, and n even if d
is odd.

Instead of working directly in the uniform probability space of random regular graphs on n
vertices Gn,d, we use the pairing model of random regular graphs, first introduced by Bollobás [5],
which is described next. Suppose that dn is even, as in the case of random regular graphs, and
consider dn points partitioned into n labeled buckets v1, v2, . . . , vn of d points each. A pairing
of these points is a perfect matching into dn/2 pairs. Given a pairing P , we may construct a
multigraph G(P ), with loops allowed, as follows: the vertices are the buckets v1, v2, . . . , vn, and
a pair {x, y} in P corresponds to an edge vivj in G(P ) if x and y are contained in the buckets vi
and vj , respectively. It is an easy fact that the probability of a random pairing corresponding to
a given simple graph G is independent of the graph, hence the restriction of the probability space
of random pairings to simple graphs is precisely Gn,d. Moreover, it is well known that a random

pairing generates a simple graph with probability asymptotic to e(1−d2)/4 depending on d, so
that any event holding a.a.s. over the probability space of random pairings also holds a.a.s. over
the corresponding space Gn,d. For this reason, asymptotic results over random pairings suffice
for our purposes. One of the advantages of using this model is that the pairs may be chosen
sequentially so that the next pair is chosen uniformly at random over the remaining (unchosen)
points. For more information on this model, see [20].

3 2-regular graphs

By definition, G can be decomposed into bα(G) brush paths. Since no brush can stay at its
initial vertex in the minimal brush configuration, these paths have at least one edge. Thus,
the maximum number of paths into which a graph G can be decomposed (that is, the number
of edges) yields an upper bound for B(G). The following simple property has been observed
in [14].

Proposition 3.1 For any graph G = (V,E), B(G) ≤ |E|.

It is clear that this upper bound can be obtained if G = (V = X ∪ Y,E) is bipartite; clean
every vertex in X (in any order) and then clean vertices in Y (again, the order is not important).
The Broom number is smaller than this trivial bound otherwise (again, see [14] for more). Thus,

B(C2k) = |E(C2k)| = 2k

B(C2k−1) = |E(C2k−1)| − 1 = 2k − 2, (3)

for k ≥ 2.
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Let Y = Yn be the total number of cycles in a random 2-regular graph on n vertices and
let Z = Zn be the number of odd cycles. From (3) if follows that we need n − Zn ≥ n − Yn

brushes in order to clean a 2-regular graph. We know that the random 2-regular graph is a.a.s.
disconnected; by simple calculations one can show that the probability of having a Hamiltonian
cycle is asymptotic to 1

2e
3/4√πn−1/2 (see, for example, [20]).

We also know that the total number of cycles Yn is sharply concentrated near (1/2) log n. It
is not difficult to see this by generating the random graph sequentially using the pairing model.
The probability of forming a cycle in step i is exactly 1/(2n − 2i + 1), so the expected number
of cycles is (1/2) log n + O(1). The variance can be calculated in a similar way. So we get that
a.a.s. the Broom number for a random 2-regular graph is at least n− (1/2 + o(1)) log n.

In order to estimate Zn, one can show that until near the end of the process, the probability
that the next cycle is odd is close to 1/2. So the Azuma-Hoeffding inequality shows that the
number of odd cycles is close to half the total.

Theorem 3.2 For G ∈ Gn,2, a.a.s.

B(G) = n− (1/4 + o(1)) log n .

4 Upper bounds

Before we move to proving a general upper bound, we study the following useful property of a
cleaning sequence that yields B(G).

Lemma 4.1 For any graph G = (V,E), there is a cleaning sequence α yielding B(G) which
is sorted with respect to |N+(αi)| − |N−(αi)|, that is, |N+(αi)| − |N−(αi)| ≥ |N+(αi+1)| −
|N−(αi+1)| for 1 ≤ i ≤ |V | − 1.

Proof: Let α be any cleaning sequence that yields B(G). Consider any pair of consecutive
vertices αi, αi+1 and suppose that |N+(αi)| − |N−(αi)| < |N+(αi+1)| − |N−(αi+1)|. It is clear
that if αiαi+1 /∈ E, then we can change the order of cleaning of these two vertices (keeping the
rest as before) and bα(G) is not affected. Since |N+(αi)|− |N−(αi)| < |N+(αi+1)|− |N−(αi+1)|,
swapping αi and αi+1 does not decrease the brush number if αiαi+1 ∈ E (in fact, it does not
change bα(G) since α yields B(G)). In order to get a cleaning sequence we claim to exist, one
can use bubble-sort.

To show the result, one can use the expansion properties of random d-regular graphs that
follow from their eigenvalues. The adjacency matrix A = A(G) of a given d-regular graph G
with n vertices, is an n×n real and symmetric matrix. Thus, the matrix A has n real eigenvalues
which we denote by λ1 ≥ λ2 ≥ · · · ≥ λn. It is known that certain properties of a d-regular graph
are reflected in its spectrum but, since we focus on expansion properties, we are particularly
interested in the following quantity: λ = λ(G) = max(|λ2|, |λn|). In words, λ is the largest
absolute value of an eigenvalue other than λ1 = d (for more details, see the general survey [11]
about expanders, or [3], Chapter 9).

The value of λ for random d-regular graphs has been studied extensively. A major result
due to Friedman [8] is the following:
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Lemma 4.2 ([8]) For every fixed ε > 0 and for G ∈ Gn,d,

P(λ(G) ≤ 2
√
d− 1 + ε) = 1 − o(1) .

The number of edges |E(S, T )| between sets S and T is expected to be close to the expected
number of edges between S and T in a random graph of edge density d/n, namely d|S||T |/n. A
small λ (or large spectral gap) implies that this deviation is small. The following useful bound
is essentially proved in [1] (see also [3]):

Lemma 4.3 (Expander Mixing Lemma) Let G be a d-regular graph with n vertices and set
λ = λ(G). Then for all S, T ⊆ V

∣

∣

∣

∣

|E(S, T )| − d|S||T |
n

∣

∣

∣

∣

≤ λ
√

|S||T | .

(Note that S ∩ T does not have to be empty; in general, |E(S, T )| is defined to be the number
of edges between S \T to T plus twice the number of edges that contain only vertices of S ∩T .)

Let us introduce one more useful definition before we move to the next theorem. At a given
time-step of the process, we define the dirty degree of v to be the degree of v in a graph induced
by the set of dirty vertices (at that point). Now we are ready to prove an upper bound of the
Broom number.

Theorem 4.4 Let G ∈ Gn,d, where d ≥ 3. Then, for every fixed ε > 0 a.a.s.

B(G) ≤ n

4

(

d + 4
√
d− 1 + ε

)

(1 + o(1)).

Proof: Suppose that d is even and let α be a cleaning sequence that yields B(G). By
Lemma 4.1, we can assume that α is sorted with respect to |N+(αi)| − |N−(αi)|; we clean
vertices of dirty degree d first (up to time td), then we move to cleaning vertices of dirty degree
d− 1 (up to time td−1), and so on. Therefore,

B(G) = dtd + (d− 2)(td−1 − td) + · · · + 2(td/2+1 − td/2+2) = 2
d
∑

i=d/2+1

ti. (4)

Moreover, without loss of generality, we can assume that td/2+1 ≤ n/2, that is, at least n/2
vertices are cleaned ‘for free’ (if α does not have this property, then α (α reversed) has it; see
Theorem 2.4).

Now, consider a subgraph induced by the set X = {α1, α2, . . . , αtd/2+1
}. The number of

edges in G[X] is

|E(G[X])| =

td/2+1
∑

j=1

N−(αj)

= (td−1 − td) + 2(td−2 − td−1) + · · · +

(

d

2
− 1

)

(td/2+1 − td/2+2)

=
d

2
td/2+1 −

d
∑

i=d/2+1

ti.
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On the other hand, Lemma 4.3 implies that

|E(G[X])| ≥ d (td/2+1)2

2n
− 1

2
λ td/2+1, (5)

so we get that

d
∑

i=d/2+1

ti ≤
d

2
td/2+1

(

1 −
td/2+1

n

)

+
1

2
λ td/2+1 ≤

dn

8
+

λn

4
.

For d even, the theorem holds by (4) and Lemma 4.2.
Exactly the same argument can be used for d odd. This time,

B(G) = 2
d
∑

i=(d+3)/2

ti + t(d+1)/2,

we can assume that t(d+1)/2 ≤ n/2, and

|E(G[X])| =
d

2
t(d+1)/2 −





d
∑

i=(d+3)/2

ti + t(d+1)/2



 .

Note that this result can be improved a little, namely, (5) can be replaced by a stronger
statement that follows from Lemma 4.5 below.

Suppose that x (0 ≤ x ≤ 1/2) and y (w(x) = w ≤ y ≤ xd) are real numbers such that the
expected number S(x, y) of sets S of xn vertices in G ∈ Gn,d with yn edges to the complement
V (G) \ S is o(n−2). Then a.a.s. no set S, |S| = xn ≤ n/2 has at least wn edges to the
complement, by the first moment principle. In order to find optimal value of w for a given x we
use the pairing model. It is clear that

S(x, y) =

(

n
xn

)(

xdn
yn

)

M(xdn− yn)
(

(1−x)dn
yn

)

(yn)!M((1 − x)dn − yn)

M(dn)

where M(i) is the number of perfect matchings on i vertices, that is,

M(i) =
i!

(i/2)!2i/2
.

To see this, we consider the pairing model discussed before. We fix xn vertices (xdn points)
to form set S (term

(

n
xn

)

), and yn points in S that correspond to yn edges to the complement

of S (term
(xdn
yn

)

). These edges are incident to yn points in V (G) \ S (term
((1−x)dn

yn

)

). After
fixing points in both S and V (G)\S, we need to connect them in all possible ways (term (yn)!).
Finally, we need to take a perfect matching of remaining points in S (term M(xdn − yn)) and
a perfect matching of remaining points in V (G) \ S (term M((1 − x)dn − yn)) to consider all
possible configurations satisfying our assumption.

After simplification we get

S(x, y) =
n!(xdn)!((1 − x)dn)!(dn/2)!2yn

(xn)!((1 − x)n)!(yn)!((xd − y)n/2)!(((1 − x)d− y)n/2)!(dn)!
.
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Using Stirling’s formula (n! ∼
√

2πn(n/e)n) and taking the exponential part we obtain

S(x, y) ≤ eo(n)
xx(d−1)n(1 − x)(1−x)(d−1)nddn/2

yyn(xd− y)(xd−y)n/2((1 − x)d− y)((1−x)d−y)n/2

= ef(x,y,d)n+o(n) , (6)

where

f(x, y, d) = x(d− 1) ln x + (1 − x)(d− 1) ln(1 − x) + 0.5d ln d− y ln y

−0.5(xd− y) ln(xd− y) − 0.5((1 − x)d− y) ln((1 − x)d− y) .

Thus, if f(x, y, d) < 0, then S(x, y) is exponentially small (n large). Since we expect dx(1−
x)n edges between S and V (G) \ S, we put y = dx(1 − x) + dz/4. Not surprisingly, function
f(x, dx(1 − x) + dz/4, d) is increasing in x so we focus on x = 1/2, in which case f(x, y, d)
becomes

(d− 1) ln(1/2) + (d/2) ln d− y ln y − (d/2 − y) ln(d/2 − y)

= −d

4
((1 + z) ln(1 + z) + (1 − z) ln(1 − z)) + ln 2

where y = (d/4)(1 + z).
It is straightforward to see that this function is decreasing in z for z ≥ 0. Let z = z(x)

denote the value of z for which it first reaches 0. Then any function of the form w(x) =
dx(1−x)+dz/4+ε can be used to get the result we aim for. To get the strongest asymptotically
almost sure upper bound for the Broom number (for a fixed d), one should solve it numerically.
To obtain a result useful for all values of d, it is straightforward to show (since the Taylor
expansion of (1 + z) ln(1 + z) + (1 − z) ln(1 − z) is z2 + z4/6 + . . .) that z < 2

√
ln 2/

√
d.

Lemma 4.5 Let G ∈ Gn,d, where d ≥ 3. Then, for every sufficiently small but fixed ε > 0 a.a.s.
for every S ⊆ V

|E(S, V \ S)| ≤ d|S||V \ S|
n

+
dn(z + ε)

4
≤ d|S||V \ S|

n
+

√
d ln 2 n

2
,

where z is the solution of d((1 + z) ln(1 + z) + (1 − z) ln(1 − z)) = 4 ln 2.

This result has the following implication giving a nontrivial upper bound for d ≥ 3.

Theorem 4.6 Let G ∈ Gn,d, where d ≥ 3. Then, for every sufficiently small but fixed ε > 0
a.a.s.

B(G) ≤ dn

4
(1 + z + ε) ≤ dn

4

(

1 +
2
√

ln 2√
d

)

,

where z is the solution of d((1 + z) ln(1 + z) + (1 − z) ln(1 − z)) = 4 ln 2.

This gives us the following asymptotically almost sure upper bounds ud for the Broom
number of random d-regular graph: u3 = 1.41n, u4 = 1.78n, u5 = 2.14n, and u6 = 2.48n. (In
this paper, whenever we quote numerical values for computed constants such as ud/n and ld/n,
we use a few decimal places rounded down for lower bounds and up for upper bounds.) In
Figure 5, the values of ud/dn have been presented for all d-values up to 100; we have also listed
the first 30 and a few more values for higher d in Table 1 (see Section 5.5).
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5 Lower bounds

5.1 A general lower bound

An argument that provides an upper bound for the brush number of a general graph (see [2])
can be easily modified to obtain a lower bound for the Broom number. This has been done
in [14] to obtain the following result.

Theorem 5.1

B(G) ≥ |E|
2

+
|V |
4

− 1

4

∑

v∈V (G),deg(v) is even

1

deg(v) + 1

for any graph G = (V,E).

Note that the bound is tight when G is a union of cliques. From this we get immediately
the following corollary presented in [14].

Corollary 5.2 Let G = (V,E) be a d-regular graph on n vertices. If d is even, then

B(G) ≥ n

4

(

d + 1 − 1

d + 1

)

,

and if d is odd, then

B(G) ≥ n

4
(d + 1).

Both bounds are tight for every n and d satisfying (d + 1)|n, as shown by a disjoint union
of complete graphs Kd+1.

The bound in Theorem 5.1 holds for every d-regular graph, and for a random d-regular graph
G one can slightly improve the result as follows. Denote by maxcut(G) the maximum value of
a cut in G = (V,E). Let V = A ∪ B be a partition of V with |E(A,B)| = maxcut(G). Define
a permutation π = (v1, v2, . . . , vn) of V by putting the vertices of A first in an arbitrary order,
followed by the vertices of B in an arbitrary order. Now, let us clean graph G using permutation
π. It is clear that after cleaning the vertices of A exactly one brush is sent from every edge
between A and B. Moreover, these brushes cannot be reused (at least, not at this point). Thus

B(G) ≥ bπ(G) ≥ maxcut(G).

The above bound can be used to show that for a random d regular graph (for a fixed d ≥ 3),
a.a.s. B(G) ≥ nd/4 + cn

√
d, for some absolute constant c > 0. Indeed, such a random graph

has a.a.s. only O(1) triangles, and one can (after a trivial alternation of such G) apply the
result of Shearer [18] who showed that a triangle-free graph G = (V,E) with degree sequence
(d1, d2, . . . , dn) has a cut of size at least |E|/2 + c

∑n
i=1

√
di for some (explicit) constant c > 0.

We get the following result.

Theorem 5.3 Let G ∈ Gn,d, where d ≥ 3. Then, a.a.s.,

B(G) ≥ n

4

(

d + Ω(
√
d)
)

.
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5.2 Degree-greedy algorithm

The differential equations method (described in [21]) is used here to find a lower bound on the
number of brushes needed to clean a graph using a degree-greedy algorithm. We describe the
approach used, state some general results, and apply them to the special cases of d = 4 before
discussing higher values of d.

5.2.1 The general setting

In this subsection, we assume d ≥ 3 is fixed with dn even. In order to get an asymptotically
almost sure lower bound on the Broom number, we study an algorithm that cleans random
vertices of maximum dirty degree. This algorithm is called degree-greedy because the vertex
being cleaned is chosen from those with the highest dirty degree.

We start with a random d-regular graph G = (V,E) on n vertices. Initially, all vertices are
dirty: D0 = V . In every step t of the cleaning process, we clean a random vertex αt, chosen
uniformly at random from those vertices with the highest dirty degree in the induced subgraph
G[Dt−1], where Dt = Dt−1 \ {αt}. In the first step, d brushes are needed to clean a random
vertex α1. The induced subgraph G[D1] now has d vertices of dirty degree d− 1 and n− d− 1
vertices of dirty degree d. In the second step, another d brushes are needed to clean a random
vertex α2 of dirty degree d. We keep cleaning vertices of dirty degree d until there are no more
vertices of dirty degree d left and the first phase ends. In general, in the kth phase (1 ≤ k ≤ d+1)
vertices of dirty degree d− k + 1 are cleaned.

For 0 ≤ i ≤ d, let Yi = Yi(t) denote the number of vertices of degree i in G[Dt] (that is, dirty
degree i). (Note that Y0(t) = n− t−∑d

i=1 Yi(t) so Y0(t) does not need to be calculated, but it

is useful in the discussion.) Let S(t) =
∑d

l=1 lYl(t) and for any statement A, let δA denote the
Kronecker delta function

δA =

{

1 if A is true,

0 otherwise.

It is not difficult to see that

E(Yi(t) − Yi(t− 1) | G[Dt−1] ∧ degG[Dt−1](αt) = r)

= fi,r((t− 1)/n, Y1(t− 1)/n, Y2(t− 1)/n, . . . , Yd(t− 1)/n)

= −δi=r − r
iYi(t− 1)

S(t− 1)
+ r

(i + 1)Yi+1(t− 1)

S(t− 1)
δi+1≤d (7)

for r ∈ [d], 0 ≤ i ≤ r. Indeed, αt has dirty degree r, hence the term −δi=r. When a pair of
points in the pairing model is exposed, the probability that the other point is in a bucket of dirty
degree i (that is, the bucket contains i unchosen points) is asymptotic to iYi(t − 1)/S(t − 1).
Thus riYi(t − 1)/S(t − 1) stands for the expected number of the r buckets found adjacent to
αt which have dirty degree i. This contributes negatively to the expected change in Yi, whilst
buckets of dirty degree i+ 1 which are reached contribute positively (of course, only if this type
of vertices (buckets) exist in a graph; thus δi+1≤d). This explains (7).

From (7) it follows that the following system of differential equations should be considered
when vertices of dirty degree r are cleaned

dyi
dx

= fi,r(x,y), i = 0, 1, . . . , r.

11



At this point we may formally define the interval [xk−1, xk] to be phase k, where the termination
point xk is defined as the infimum of those x > xk for which yd−k+1(x) = 0. Using final values
yi(xk) in phase k as initial values for phase k+1 we can repeat the argument inductively moving
from phase to phase starting from phase 1 with obvious initial conditions yd(0) = 1 and yi(0) = 0
for 0 ≤ i ≤ d− 1.

The conclusion is that, for the degree-greedy algorithm we consider, with variables Yi defined
as above, we have that a.a.s.

Yi(t) = nyi(t/n) + o(n)

for 1 ≤ i ≤ d − k + 1 for phases k = 1, 2, . . . , d + 1. We omit all details, pointing the reader to
the general survey [21] about the differential equations method. Let us also mention that we
are interested in the first ⌈d/2⌉ phases only; the rest of the graph is cleaned ‘for free’. For the
same reason, we do not have to control the number of vertices of dirty degree i, 0 ≤ i ≤ ⌊d/2⌋.

In the kth phase (1 ≤ k ≤ ⌈d/2⌉) vertices of dirty degree d − k + 1 are cleaned. Since
d− 2k + 2 brushes are needed to clean a vertex (see (1)), we need

lkd = (1 + o(1))n(d − 2k + 2)(xk − xk−1)

brushes in phase k. Thus, the total number of brushes needed to clean a graph using the
degree-greedy algorithm is a.a.s. equal to

ld =

⌈d/2⌉
∑

k=1

lkd = (1 + o(1))n

⌈d/2⌉
∑

k=1

(d− 2k + 2)(xk − xk−1).

5.3 The end of the first phase

Before we move to a specific values of d, let us discuss the behaviour of vertices of dirty degree
d during the first phase that can be studied in general. During this phase we clean vertices of
dirty degree d. In order to control the number of vertices of dirty degree d, we have to consider
the following differential equation.

z′d(x) = −1 − d · z(x)

1 − 2x

with the initial condition zd(0) = 1. The solution is

zd(x) = −1 − 2x

d− 2
+

d− 1

d− 2
(1 − 2x)d/2, (8)

and thus the first phase finishes at time

t1 =
n

2

(

1 −
(

1

d− 1

) 2

d−2

)

(9)

(the second root of the equation zd(x) = 0 is 1/2).
This initial result suggests that we should focus on differential equations of the following

form

z′(x) =
a · z(x)

q − 2x
+

s
∑

i=1

bi(q − 2x)ci .

12



The general solution to this differential equation is

z(x) = C(q − 2x)−a/2 −
s
∑

i=1

bi(q − 2x)ci+1

a + 2(ci + 1)
δa+2(ci+1)6=0

− b

2
(q − 2x)−a/2 ln(q − 2x)δ∃i,a+2(ci+1)=0. (10)

5.4 4-regular graphs

For 4-regular graphs, to estimate the Broom number one has to carefully analyze phases 1 and
2. During the first phase, we need four brushes to clean vertices of dirty degree 4. From (8)
and (9), we get that

z4(x) = −1

2
(1 − 2x) +

3

2
(1 − 2x)2

and the first phase ends at time t1 = n
3 . To study the number of vertices of dirty degree 3 during

the first phase, we consider the following differential equation

z′3(x) =
−3z3(x)

1 − 2x
+

4z4(x)

1 − 2x
=

−3z3(x)

1 − 2x
− 2 + 6(1 − 2x)

with the initial condition z3(0) = 0. The solution (see (10) and Figure 3 (a)) is

z3(x) = (1 − 2x)
(

8(1 − 2x)1/2 − 2 − 6(1 − 2x)
)

so a.a.s. Y3(t1) = (8
√
3

9 − 4
3)n(1 + o(1)) ≈ 0.2063n.

During the second phase, we need two brushes to clean each vertex of dirty degree 3. Now,
the differential equation we need to consider is

z′3(x) = −1 − 3z3(x)

10/9 − 2x

with the initial condition z3
(

1
3

)

= 8
√
3

9 − 4
3 (note that the number of points in the pairing model

at time t is 10n
3 − 6t). The solution (see (10) and Figure 3 (b)) is

z3(x) =

(

10

9
− 2x

)

(

(

3
√

3 − 3
)

(

10

9
− 2x

)1/2

− 1

)

so the second phase ends at time t2 = (12 −
√
3

36 )n ≈ 0.4519n. Therefore, we get an asymptotically
almost sure lower bound of

l4 = (1 + o(1))(4t1 + 2(t2 − t1)) = (1 + o(1))n

(

5

3
−

√
3

18

)

≈ 1.57044n.

On the other hand, it is true that a.a.s. a random 4-regular graph can be decomposed into two
edge-disjoint Hamilton cycles [12], and hence four paths.

The solutions to the relevant differential equations for d = 4 are shown in Figure 3.
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Figure 2: Solution to the differential equations: 4-regular graph.

d ld/n ud/n
3 1.25 1.41
4 1.57 1.78
5 1.92 2.14
6 2.22 2.48
7 2.56 2.82
8 2.85 3.15
9 3.18 3.47
10 3.47 3.79

d ld/n ud/n
11 3.78 4.11
12 4.07 4.42
13 4.38 4.73
14 4.66 5.04
15 4.97 5.34
16 5.25 5.65
17 5.55 5.95
18 5.83 6.25

d ld/n ud/n
19 6.13 6.55
20 6.41 6.84
21 6.71 7.14
22 6.98 7.44
23 7.28 7.73
24 7.55 8.02
25 7.85 8.32
26 8.12 8.61

d ld/n ud/n
27 8.41 8.90
28 8.69 9.19
29 8.97 9.48
30 9.25 9.77
31 9.54 10.06
32 9.81 10.34
99 28.00 28.89
100 28.26 29.16

Table 1: Approximate upper and lower bounds on the Broom number.

5.5 d-regular graphs of higher order

In Figure 5, the values of ld/dn and ud/dn have been presented for all d-values up to 100,
although we have only listed the first 30 and a few more values for higher d in Table 1. The
values of a lower and an upper bounds of b(G)/dn have been presented as well (see [2] for
more). The computations presented in the paper were performed by using MapleTM [16]. The
worksheets can be found at the following address: “http://www.math.wvu.edu/~pralat/”.

For each value of d ≥ 3 there is a gap between ld/dn and ud/dn but the gap becomes smaller
for higher values of d which follows from the following theorem.

Theorem 5.4 The Broom number of a random d-regular graph is asymptotically almost surely
n
4 (d + Θ(

√
d)). Moreover, limd→∞ ld/dn = 1/4, that is, for large d, the degree-greedy algorithm

a.a.s. achieves the optimal number of brushes up to a lower order term.

Proof: The first part of the theorem follows from Theorem 5.1 (see also Theorem 5.3) and
Theorem 4.4 (see also Theorem 4.6).

It remains to estimate the performance of the degree-greedy algorithm. Let d ≥ 3 be an
integer, and let G ∈ Gn,d, as before. It follows from Lemmas 4.2 and 4.3 that a.a.s. for all
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Figure 3: A graph of lower/upper bound of b(G)/dn and B(G)/dn versus d.

m ∈ {0, 1, . . . , n− 1} and all sets X ⊆ V with |X| = m,

|E(G[V \X])| ≥ (n−m)2d

2n
− 1

2
2
√
d(n−m) ,

since the number of edges inside G[V \ X] is |E(V \ X,V \ X)|/2. So the average degree of
G[V \X] (and thus the maximum degree as well) is at least

ξm = max

{

(n−m)d

n
− 2

√
d, 0

}

.

Thus, using (1) we get that a.a.s. the number of brushes used by the degree-greedy algorithm is
at least

n−1
∑

m=0

max{2ξm − d, 0} ≥ dn

4
−O(

√
dn) .

It follows, by Theorem 4.6, that for large d the greedy algorithm achieves, a.a.s., essentially the
optimum number of brushes. This completes the proof of the theorem.

6 Possible improvement

We conclude the paper with an open problem that can be posed for any d ≥ 3. It follows from
Theorem 5.4 that the degree greedy algorithm we study a.a.s. achieves the optimal number of
brushes up to a lower order term. However, for a small values of d, one can try to improve the
algorithm and use more brushes by starting with a larger independent set in the first phase; the
cleaning process can be continued using the degree-greedy approach as before. In our case, the
number of vertices cleaned during the first phase is (1 − (d− 1)−2/(d−2))n/2 (see (9)) but other
algorithms for finding a larger independent set are known (see, for example, [19, 6, 7]).
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