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Abstract. A model for cleaning a graph with brushes was recently introduced. Most
of the existing papers consider the minimum number of brushes needed to clean a given
graph G in this model, the so-called brush number b(G). In this paper, we focus on
the broom number, B(G), that is, the maximum number of brushes that can be used
to clean a graph G in this model.

1. Introduction

The cleaning model for searching, or rather decontaminating, a graph G was intro-
duced in [9, 10]. Each vertex has a number of brushes assigned to it and at time t = 0,
all the edges and vertices are declared dirty. On each tick of the clock, a dirty vertex,
x, is chosen, if one exists, that has at least as many brushes as dirty incident edges,
then x sends exactly one brush along each edge incident to x. The vertex x and all
its incident edges are declared clean and those clean edges could be regarded as being
deleted from the graph. The first part of the problem is to determine an initial config-
uration of brushes and a sequence of vertices which, when cleaned in that order, will
result in every vertex and edge being cleaned. Note that a dirty vertex may have no
dirty incident edges but it still needs to be cleaned. Such a sequence of vertices is called
a cleaning sequence. The focus of [1, 4, 5, 9, 10, 11, 14] is, for a graph G, to determine
the minimum number of brushes required to clean the graph, called the brush number
and denoted b(G).
In this paper, we consider the broom number, B(G), that is, the maximum number

of brushes that can be used to clean the graph in this model where every brush has to
clean at least one edge. (Note that the restriction is necessary; else ‘infinitely’ many
brushes can be used.) The broom number of a random d–regular graph was recently
studied in [13] but no other properties of B(G) are known. A formal definition is given
in the next section for all these concepts.
To illustrate the two concepts, take a path Pn on n vertices. It is easy to see that

b(Pn) = 1 (start with one brush on a leaf, at each step it cleans the next edge). Clearly
B(Pn) is at most |E(Pn)| = n− 1 and this occurs if each brush cleans exactly one edge
in the graph. It is easy to see that Pn can actually be cleaned using n − 1 brushes.
Consider the example with P7 shown in Figure 1. Initially, two brushes are placed
at each of vertices v2, v4, and v6. In the first step, v2 is cleaned (shown in 1); in the
second step, v4 is cleaned (shown in 2); in the third step, v6 is cleaned (shown in 3). At
this point, every edge of the graph has been cleaned; however, the cleaning algorithm,
described formally in Section 2, continues to clean each of the remaining dirty vertices.
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These steps have been omitted from Figure 1 because no brushes actually move in the
remaining steps of the algorithm. Consequently, B(P7) = |E(P7)| = 6.

v1 v2 v3 v4 v5 v6 v7

2 2 2
0)

1 1 2 2
1)

1 2 1 2
2)

1 2 2 1
3)

Figure 1. The Cleaning Process for P7 using B(P7) = 6 brushes.

Much has been discovered about the brush number. A probabilistic argument, see [1,
Theorem 3.7] and Theorem 3.3, gives the average number of brushes needed to clean a
graph thereby giving both an upper and a lower bound for b(G) and B(G), respectively.
Indeed, [1, 11, 14] are all concerned with brush numbers of random graphs (both random
d–regular graphs and binomial random graphs). In [9, 10] results for general and specific
graphs are given. In [4], a slightly different model is used: instead of cleaning one vertex
at a time (sequential model), all vertices that can be cleaned are (parallel model). For
example, mechanized cleaning agents have recently been used to periodically clean a
network of pipes from a regenerating contaminant, such as algae or zebra mussels (see [6,
8]) and have been suggested as a means of removing biofilm in cases where chemical or
biological controls are unavailable or infeasible as the only method or decontamination.
As reported in [12], “Any kind of mechanical action will not only improve cleaning
results, but will also result in increased microbial kill, when disinfectants are used.”
The cases presented in [6, 8] involve a nuclear power plant. Shutting down the plant
whilst cleaning the pipes is not a feasible option hence the need for mechanical devices
that can clean during regular operating conditions. If a device needs servicing, repair
or replacement, then the pipe network and the associated plant would have to be shut
down with possibly huge financial implications to the company and inconvenience to
customers. One way of maximizing the periods between mechanical breakdowns is
to minimize the work done by each machine. In this case, maximize the number of
machines in the network without introducing unnecessary redundancies, i.e. machines
which sit idle during a cleaning sequence. This is one motivation for looking at the
brush number.
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In our models, once the graph has been cleaned, the edges are re-introduced and
declared dirty. In the sequential model, for any cleaning sequence, the final configura-
tion of brushes is a perfectly good initial configuration that results in a second cleaning
sequence (see [9, 10]) and so the graph can be continually and automatically cleaned.
This is not true for parallel cleaning. (For example, take a triangle with two brushes at
one vertex. The triangle can be cleaned exactly once.) However, this is not to say that
sequential cleaning is easy. On the contrary in general, it is difficult to determine b(G).

Brush Cleaning

Instance: A graph G = (V,E) and integer k ≥ 0.
Question: Is b(G) ≤ k?

In [4], Brush Cleaning was translated into Balanced Vertex–Ordering,
which was known from [3] to be NP-complete. More specifically, the problem re-
mains NP-complete for bipartite graphs of maximum degree 6 [3], planar graphs of
maximum degree 4 [7], and 5-regular graphs [7].
In the next section, we formally introduce the problem and associated concepts. In

Section 3, we show that |E(G)|/2 ≤ B(G) ≤ |E(G)| and B(G) ≤ |V (G)|2/4. Theo-
rem 3.7 gives an upper bound in terms of edge decompositions which is very useful in
the later sections. In Section 4, we show that adding an edge can increase the broom
number by 1 or leave it unchanged, which allows us to show that for 0 ≤ k ≤ ⌊n2

4
⌋ there

is a graph on n vertices with B(G) = k (the lower bound increases to n−1 if the graph
is connected). We also show that b(G) = B(G) if an only if G is a disjoint union of
cliques (Theorem 4.6). In Section 5, we obtain very tight bounds on the broom number
of: the Cartesian product of cliques; the strong product of cycles with both cycles and
cliques.

2. Definitions and previous results

The following cleaning algorithm and terminology was recently introduced in [10].
An initial configuration of brushes is denoted by ω0 : V (G) → N ∪ {0}. At each step
t, ωt(v) denotes the number of brushes at vertex v (ωt : V → N ∪ {0}) and Dt denotes
the set of dirty vertices. An edge uv ∈ E is dirty if and only if both u and v are dirty:
{u, v} ⊆ Dt. Finally, let Et(v) denote the number of dirty edges incident to v at step t:

Et(v) =

{
|N(v) ∩Dt| if v ∈ Dt

0 otherwise.

Definition 2.1. The cleaning process P(G, ω0) = {(ωt, Dt)}Tt=0 of an undirected
graph G = (V,E) with an initial configuration of brushes ω0 is as follows:

(0): Initially, all vertices are dirty: D0 = V ; set t := 0
(1): Let αt+1 be any vertex in Dt such that ωt(αt+1) ≥ Et(αt+1). If no such
vertex exists, then stop the process (T = t), return the cleaning sequence

α = (α1, α2, . . . , αT ), the final set of dirty vertices DT , and the final con-

figuration of brushes ωT
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(2): Clean αt+1 and all dirty incident edges by moving a brush from αt+1 to each
dirty neighbour. More precisely, Dt+1 = Dt \ {αt+1}, ωt+1(αt+1) = ωt(αt+1) −
Et(αt+1), and for every v ∈ N(αt+1)∩Dt, ωt+1(v) = ωt(v) + 1, the other values
of ωt+1 remain the same as in ωt.

(3): t := t+ 1 and go back to (1)

Note that for a graph G and initial configuration ω0, the cleaning process can return
different cleaning sequences and final configurations of brushes; consider, for example,
a triangle with vertices u, v, w. If we set ω0(u) = 2 and ω0(v) = ω0(w) = 0, then the
cleaning process may clean u, v, w (leaving ω2(w) = 2) or u, w, v (leaving ω2(v) = 2).
It was shown (see [10, Theorem 2.1]), however, that the final set of dirty vertices is
determined by G and ω0. Thus, the following definition is natural.

Definition 2.2. A graph G = (V,E) can be cleaned by the initial configuration of
brushes ω0 if the cleaning process P(G, ω0) returns an empty final set of dirty vertices
(DT = ∅).
The brush number, b(G), is the minimum number of brushes needed to clean G, that

is,

b(G) = min
ω0:V→N∪{0}

{∑

v∈V

ω0(v) : G can be cleaned by ω0

}
.

An equivalent formulation of the problem is useful. Fix a permutation, α of the
vertices and start with zero brushes. Clean the graph in the order given by α adding
the necessary brushes (if any) required for the next vertex to be cleaned. That number
is equal to the difference of the number of adjacent vertices not cleaned and those
already cleaned. More specifically, Let α = (x1, x2, . . . , xn) be a permutation of the
vertices of G; for each vertex xi let N

+(xi) = {xj : xjxi ∈ E and j > i} and N−(xi) =
{xj : xjxi ∈ E and j < i}; finally let

bα(G) =

n∑

i=1

max{|N+(xi)| − |N−(xi)|, 0}. (1)

The brush number is given by

b(G) = min
α

bα(G).

It is clear that for every cleaning sequence α, bα(G) ≥ b(G) and that bα(G) only
counts brushes that actually clean at least one edge. In this paper we focus on the
worst-case scenario; that is, we would like to determine the cleaning sequence which
uses as many brushes as possible. This, of course, gives an upper bound for any cleaning
sequence.

Definition 2.3. The broom number, B(G), of a given graph G = (V,E) is

B(G) = max
α

bα(G).

For example, we may clean C8 = (v1, v2, . . . , v8) with only two brushes, using cleaning
sequence γ = (v1, v2, . . . , v8). That is, bγ(C8) = 2 (in fact, b(C8) = 2). However, we
could also clean C8 with eight brushes, using cleaning sequence α = (v1, v3, v5, v7, v2, v4, v6, v8).
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That is, bα(C8) = 8 (see Figure 2 for the initial configuration of brushes). Clearly the
maximum number of brushes one could use to clean any graph G is |E(G)|: each brush
cleans exactly one edge. Consequently, B(C8) = bα(C8) = 8.

2

2

2

2

v1 v2

v5v6

v3

v4v7

v8

Figure 2. An initial configuration to clean C8 using B(C8) = 8 brushes.

The model presented in this paper is such that once every vertex and edge of a graph
have been cleaned, the vertices and edges will become re-contaminated (continually),
say by algae, so that cleaning is regarded as an on-going process. Ideally, the final
configuration of the brushes, after all the edges have been cleaned, should be a viable
starting configuration to clean the graph again. This is always possible: the following
theorem has been proven in [10] (Theorem 2.3), although the statement presented here
is a bit stronger focusing on the cleaning sequence that can be used. Thus, if we can
clean a graph once using bα(G) brushes and afterward the brushes remain at their
respective final configurations, then if the vertices and edges become re-contaminated,
we may clean the graph using the same bα(G) brushes again.

Theorem 2.4 ([10]). The Reversibility Theorem

Given the initial configuration ω0, suppose G can be cleaned using cleaning sequence
α = (α1, α2, . . . , αn) and yielding final configuration ωn, n = |V (G)|. Then, given initial
configuration τ0 = ωn, G can be cleaned using cleaning sequence α = (αn, αn−1, . . . , α1)
and yielding the final configuration τn = ω0. Moreover, bα(G) = bα(G).

When a graph G is cleaned using the cleaning process described in Definition 2.1,
each edge of G is traversed exactly once and by exactly one brush. Note that no brush
may return to a vertex it has already visited, motivating the following definition.

Definition 2.5. The brush path of a brush b is the path formed by the set of edges
cleaned by b.

3. General bounds

Let us start with the following results that provide an upper and lower bound for the
broom number of a general graph.
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By definition, G can be decomposed into bα(G) brush paths. After a graph has
been cleaned using the minimal brush configuration, note that no brush can stay at its
initial vertex: consequently, these brush paths each contain at least one edge. Thus,
the maximum number of paths into which a graph G can be decomposed (that is, the
number of edges) yields an upper bound for B(G).

Observation 3.1. For any graph G = (V,E), B(G) ≤ |E|.
This upper bound can be obtained if G is bipartite. We will show that the broom

number is smaller than this trivial bound otherwise.

Theorem 3.2. B(G) = |E| if and only if G is bipartite.

Proof. Let G = (V = X ∪ Y,E) be a bipartite graph with partite sets X and Y . First,
we clean the vertices in X (in any order). Once every vertex in X has been cleaned,
every edge of G has been cleaned. Note that it is not possible to reuse any brush, so
the number of brush paths we start up to this point of the process is |E|. We then clean
the vertices in Y (again, the order is not important) to clean the graph. Combining
this result with Observation 3.1, we find that B(G) = |E|.
Suppose now that G is not bipartite. Consider any cleaning sequence α and vertices

v1, v2, . . . , v2k+1 (k ∈ N) that induce an odd cycle C. It is clear that at some point in
the cleaning process, we clean vertex vi (i ∈ [2k + 1]) with the property that one of
its neighbours in C has already been cleaned (say, vi−1) and the other has not (vi+1)
as shown in Figure 3. Clearly there is some brush which has traversed the edge vi−1vi
from vi−1 to vi. When vi is cleaned, that brush can now traverse a second edge and so
that brush path is of length at least two. This implies that at least one brush path has
length at least two and B(G) ≤ |E| − 1.

· · ·

· · ·· · ·
vi−1 vi+1

vi

Figure 3. The step at which vertex vi is to be cleaned in the proof of Theorem 3.2.

�

Now, let us move to the lower bound. An argument that provides an upper bound
for the brush number of a general graph (see [1, Theorem 3.7]) can be easily modified
to obtain a lower bound for the broom number.

Theorem 3.3.

B(G) ≥ |E|
2

+
|V |
4

− 1

4

∑

v∈V (G),deg(v) is even

1

deg(v) + 1

for any graph G = (V,E).
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Proof. Let π be a random permutation of the vertices of G taken with uniform distri-
bution. We clean G according to this permutation to get the value of bπ(G) (note that
bπ(G) is a random variable now). For a vertex v ∈ V , it follows from (1) that we have
to assign to v exactly

X(v) = max{|N+(v)| − |N−(v)|, 0} = max{2|N+(v)| − deg(v), 0}
brushes in the initial configuration, where |N+(v)| is the number of neighbors of v
that follow it in the permutation (that is, the number of dirty neighbours of v at
the time when v is cleaned). The random variable |N+(v)| attains each of the val-
ues 0, 1, . . . , deg(v) with probability 1/(deg(v) + 1); indeed, this follows from the fact
that the random permutation π induces a uniform, random permutation on the set of
deg(v) + 1 vertices consisting of v and its neighbors. Therefore the expected value of
X(v), for even deg(v), is

deg(v) + (deg(v)− 2) + · · ·+ 2

deg(v) + 1
=

deg(v) + 1

4
− 1

4(deg(v) + 1)
,

and for odd deg(v) it is

deg(v) + (deg(v)− 2) + · · ·+ 1

deg(v) + 1
=

deg(v) + 1

4
.

Thus, by linearity of expectation,

Ebπ(G) = E

(
∑

v∈V

X(v)

)
=
∑

v∈V

EX(v)

=
|E|
2

+
|V |
4

− 1

4

∑

v∈V (G),deg(v) is even

1

deg(v) + 1
,

which means that there is a permutation π0 such that B(G) ≥ bπ0
(G) ≥ Ebπ(G) and

the assertion holds. �

A slightly weaker bound than the one presented in Theorem 3.3 can be obtained as
follows. Denote by maxcut(G) the maximum size of an edge cut in G = (V,E). Let
V = A ∪ B be a partition of V with |E(A,B)| = maxcut(G). Define a permutation
π = (v1, v2, . . . , vn) of V by putting the vertices of A first in an arbitrary order, followed
by the vertices of B in an arbitrary order. Now, let us clean graph G using permutation
π. It is clear that after cleaning the vertices of A exactly one brush is sent through
every edge between A and B. Moreover, these brushes cannot be reused (at least, not
at this point). Thus we get the following.

Observation 3.4. For any graph G = (V,E), B(G) ≥ maxcut(G).

Now, using the well-known fact that every graph G has a bipartite subgraph with at
least half the edges of G (see, for example, the textbook [2] on the probabilistic method)
we get that B(G) ≥ |E|/2.
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Let us also note that slightly improved bound can be obtained for triangle free graphs.
In order to do that, one can apply the result of Shearer [15] who showed that a triangle-
free graph G = (V,E) with degree sequence (d1, d2, . . . , dn) has a cut of size at least
|E|/2 + c

∑n
i=1

√
di for some (explicit) constant c > 0. In particular, it follows from

Theorem 3.3 that for a d-regular graph on n vertices B(G) ≥ n
4
(d+ Ω(1)), whereas for

triangle free graphs we get that B(G) ≥ n
4

(
d+ Ω(

√
d)
)
.

From this we get immediately the following corollary.

Corollary 3.5. For any graph G = (V,E) with E 6= ∅,
1

2
≤ B(G)

|E| ≤ 1.

Note also that the bound in Theorem 3.3 is tight when G is a union of cliques (since
all cleaning sequences are equivalent in this case). In fact

B(Kn) = b(Kn) =

⌊
n2

4

⌋
(2)

for any complete graph Kn (see [10, Theorem 5.2]). On the other hand, the difference
between B(G) and b(G) can be arbitrarily large. For example B(Pn) = n− 1 whereas
b(Pn) = 1, or B(Km,n) = mn (see Theorem 3.2) and b(Km,n) = ⌈mn/2⌉ (shown in [9];
see also [5] where the parallel version of the cleaning process was used to clean Km,n).

Observation 3.1 provides an upper bound in terms of the number of edges. In the
following theorem, the upper bound is a function of the number of vertices. Again, the
result is sharp: the upper bound is obtained for Kn and K⌊n/2⌋,⌈n/2⌉.

Theorem 3.6. For any graph G on n vertices,

B(G) ≤
⌊
n2

4

⌋
=





n2

4
, if n is even;

n2−1
4

, if n is odd.

Before we move to the proof of this theorem, let us mention that it is a simple
implication of the Lemma 4.1 proved in the next section. We present an alternative
proof below.

Proof of Theorem 3.6. We use induction on the number of vertices n. The base case
(n = 1) is obvious.
First, suppose n is even. For inductive step assume that B(G) ≤ n2/4 for all graphs

on n vertices. Let Gn+1 be an arbitrary graph on n+1 vertices. We would like to show
that

B(Gn+1) ≤ n2/4 + n/2.

Let α = (α1, α2, . . . , αn+1) be a cleaning sequence that uses B(Gn+1) brushes to clean
Gn+1 and let ω0 and ωn+1 be the initial configuration and, respectively, the final con-
figuration associated with α.
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Suppose first that there exists vertex v in Gn+1 with ω0(v) = ωn+1(v) = 0. Create
a new graph G′ from Gn+1 by removing vertex v and creating deg(v)/2 new edges
from vertices in N+(v) to vertices in N−(v) such that degG′(u) = degGn+1

(u) for each
u ∈ V (G′). Note that G′ does not have to be a simple graph; let Gn be a simple graph
obtained from G′ by replacing multiple edges by a single edge. As deg(v)/2 ≤ n/2,
there were at most n/2 brush paths passing through vertex v in Gn+1 and so at most
n/2 multiple edges were created in G′. Consequently,

B(Gn+1) ≤ B(Gn) + n/2 ≤ n2/4 + n/2

by the inductive hypothesis.
Suppose now that there is no vertex in Gn+1 with ω0(v) = ωn+1(v) = 0, that is,

each vertex starts or finishes at least one brush path if the cleaning sequence α is used.
Without loss of generality, we can assume that there are at most n/2 vertices with
ω0(v) = 0 (if this is not the case, then ωn+1(v) has this property and ωn+1(v) and α, the
reverse sequence of α, can be considered instead of ω0(v) and α). If we delete an edge
from α1 (the first vertex cleaned) to a vertex αi with ω0(αi) = 0 (at least one brush gets
stuck in αi; otherwise ωn+1(αi) = 0), we can remove one brush from α1 in the initial
configuration in order to still be able to clean a graph using the cleaning sequence α.
On the other hand, if an edge from α1 to vertices with ω0(αi) > 0 is removed, then this
does not affect bα(G) (one brush has to be moved from α1 to αi). Thus, if we delete
vertex α1 together with all its incident edges, we save at most n/2 brushes and still
be able to clean Gn = Gn+1 \ α1 using the cleaning sequence α̃ = (α2, α3, . . . , αn+1).
Therefore,

B(Gn+1) ≤ bα̃(Gn) + n/2 ≤ B(Gn) + n/2 ≤ n2/4 + n/2

by inductive hypothesis.
The proof for n odd is exactly the same. We assume that B(G) ≤ n2/4− 1/4 for all

graphs on n vertices and show that B(Gn+1) ≤ n2/4 + n/2 + 1/4. If there is a vertex
with ω0(v) = ωn+1(v) = 0, we get B(Gn+1) ≤ B(Gn) + (n − 1)/2 ≤ n2/4 + n/2− 3/4;
otherwise, we get B(Gn+1) ≤ B(Gn) + (n+ 1)/2 ≤ n2/4 + n/2 + 1/4 and the assertion
follows. �

We finish this section with an upper bound of B(G) in terms of an edge decomposition
of G which will be very useful in determining the broom number of products of graphs
we consider in Section 5.

Theorem 3.7. Given a graph G = (V,E), let E1, E2, . . . , Ek be any partition of E and
let Gi = (V,Ei) for i ∈ {1, 2, . . . , k}. Then

B(G) ≤
k∑

i=1

B(Gi).

Proof. Consider the cleaning sequence α that yields B(G): that is, B(G) = bα(G). This
cleaning sequence can be used to clean each subgraph Gi (i ∈ {1, 2, . . . , k}) to get a

decomposition of Ei containing bα(Gi) brush paths {b1i , b2i , . . . , bbα(Gi)
i }. Now, we can

clean the original graph G using cleaning sequence α, but each time a brush traverses
the first edge of any brush path bji (i ∈ {1, 2, . . . , k}, j ∈ {1, 2, . . . , bα(Gi)}), we assign
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this brush to bji and the brush must follow the path to its last vertex; after this the
brush can be reused. It is clear that this is a valid cleaning process of G (the shape of
brush paths depends on bji ’s however) that yields bα(G) brush paths. Each brush path

consists of one or more bji ’s which implies that

B(G) = bα(G) ≤
k∑

i=1

bα(Gi) ≤
k∑

i=1

B(Gi).

This finishes the proof of the theorem. �

4. Other results

In this section we investigate which values for the broom number can be obtained
when a graph on n vertices is cleaned. For any graph G with e /∈ E(G), it was shown
in [9] that

bα(G)− 1 ≤ bα(G+ e) ≤ bα(G) + 1 (3)

for any cleaning sequence α. This implies that adding an edge can only change the
brush number by 1. It is easy to construct examples to show that both inequalities
are tight. In other words, there are pairs (G, e) such that the brush number decreases,
stays the same, or increases when the edge e is added to the graph G. A similar, but
slightly stronger, property holds for the broom number, namely, the broom number
never decreases with the addition of an edge.

Lemma 4.1. For any graph G with e /∈ E(G),

B(G) ≤ B(G+ e) ≤ B(G) + 1

From the lemma we get immediately the following corollary.

Corollary 4.2. For any two graph G,H such that G ⊂ H we have B(G) ≤ B(H).

In order to prove Lemma 4.1 we need the following useful property of a cleaning
sequence that yields B(G). It is clear that in order to maximize the number of brushes
used there is no point to clean a vertex ‘for free’ when there is another dirty vertex
available for which we need to introduce brushes in the initial configuration. Therefore,
one can assume that that the cleaning sequence α yielding B(G) has the property
that |N+(αi)| − |N−(αi)| is positive up to some value of i; the remaining terms are
non-positive. In fact, the following (a bit stronger) result was proved in [13].

Lemma 4.3. For any graph G = (V,E), there is a cleaning sequence α yielding B(G)
which is sorted with respect to |N+(αi)| − |N−(αi)|, that is, |N+(αi)| − |N−(αi)| ≥
|N+(αi+1)| − |N−(αi+1)| for 1 ≤ i ≤ |V | − 1.

Proof of Lemma 4.1. The upper bound follows immediately from (3): for every cleaning
sequence α, bα(G+e) ≤ bα(G)+1 ≤ B(G)+1. It remains to show that B(G+e) ≥ B(G).
Consider the cleaning sequence α that uses bα(G) = B(G) brushes. Based on

Lemma 4.3, we can assume that α is sorted with respect to |N+(αi)| − |N−(αi)|. Now,
let us add a new edge e = αxαy with x < y to the graph G. Since B(G+e) ≥ bα(G+e),
it is enough to show that bα(G+ e) ≥ B(G) = bα(G).
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The two sums we consider (see (1)) for bα(G + e) and for bα(G), respectively, can
differ in at most two terms: for i = x and i = y. Since, after adding edge e, αx has
one more dirty neighbour when it is cleaned, the term for i = x cannot decrease. If the
term for i = x after adding e increases by 1 (we need to ‘pay’ more to clean αx), then
the assertion follows even if the term for i = y decreases by 1. If the term for i = x
remains unchanged (we clean αx ‘for free’ before as well as after adding e), then the
other term must remain unchanged, since the cleaning sequence is sorted. �

Now, we are ready to prove which values can be obtained for the broom number.
Since exactly the same argument can be used for the brush number, we consider both
numbers in the following theorem. Note that the proof is non-constructive; we do not
know how to explicitly construct a graph on n vertices with a given brush number.
This remains an open problem. Constructing a graph with a given broom number is
much easier. Indeed, one can consider a bipartite graph G with partite sets containing
⌊n/2⌋ and ⌈n/2⌉ vertices, respectively. If |E(G)| = k, then B(G) = k.

Theorem 4.4. Fix any integer n ≥ 1. Then for each k = 0, 1, . . . , ⌊n2/4⌋, there exist
graphs G and G′ on n vertices with B(G) = b(G′) = k. No other value can be obtained.

Proof. Consider a sequence {Gt = ([n], Et)}0≤t≤(n2)
of simple graphs on n vertices. Let

G0 be the empty graph. For t ≥ 1 we form Gt from Gt−1 by adding any edge; G(n2)
is

a clique. Now, consider two sequences of numbers {B(Gt)}0≤t≤(n2)
and {b(Gt)}0≤t≤(n2)

;

B(G0) = b(G0) = 0 and B(G(n2)
) = b(G(n2)

) = ⌊n2/4⌋. Moreover, it follows from (3)

and Lemma 4.1 that the two consecutive numbers can differ by at most one. Therefore,
there exist t and t′, 0 ≤ t, t′ ≤

(
n
2

)
with B(Gt) = b(Gt′) = k for each k, 0 ≤ k ≤ ⌊n2/4⌋.

Observation 3.1 ensures that no other value for the broom number can be obtained.
(The same conclusion can be deducted from the fact that {B(Gt)}0≤t≤(n2)

is non-

decreasing based on Lemma 4.1.) Since

b(G) ≤ |E|
2

+
|V |
4

− 1

4

∑

v∈V (G),deg(v) is even

1

deg(v) + 1
≤ n2

4

(see [1, Theorem 3.7]), the same property holds for the brush number. �

It is clear that not all possible values of the broom number can be obtained if an
additional condition for a graph is added. For example, B(G) cannot be too small if
G is assumed to be connected. However, we can start with a path on n vertices for
which B(Pn) = |E(Pn)| = n−1 (since Pn is bipartite) and repeat the argument we used
before to get that all values between n− 1 and ⌊n2/4⌋ can be obtained. This covers all
possible values by Lemma 4.1.

Observation 4.5. For any connected graph G on n vertices, B(G) ≥ n−1. Moreover,
for each k = n − 1, n, . . . , ⌊n2/4⌋, there exists a connected graph G on n vertices with
B(G) = k. No other value can be obtained.
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Now, we would like to characterize those graphs that have the property that no matter
which cleaning sequence is used, each one requires the same number of brushes. In other
words, we would like to determine when B(G) = b(G). As mentioned, cliques have this
property and it is not difficult to see that a disjoint union of cliques also satisfies the
required property. The following theorem shows this covers all possibilities.

Theorem 4.6. Let G be a graph. Then B(G) = b(G) if and only if G is a disjoint
union of cliques.

Proof. Note that the order in which vertices are cleaned in one connected component
does not affect any other component, that is, the brush number of a graph G is a sum of
the brush numbers of all connected components of G. Thus, without loss of generality,
we can assume that G is connected. Since B(Kn) = b(Kn) = ⌊n2/4⌋, it remains to
show that B(G) > b(G) if G is not a clique.
Fix a cleaning sequence α and let fα(v) = |N+

α (v)| − |N−
α (v)|. Then following (1),

bα(G) =
∑

v∈V (G)

max{fα(v), 0}.

Suppose there exist adjacent vertices v, u that are cleaned consecutively (v is cleaned
first). If u, v are exchanged (the rest of the sequence remains unchanged), then fα(v)
decreases by 2 whereas fα(u) increases by 2. Thus, if we can find a cleaning sequence
α with two consecutive vertices v, u connected by an edge, and one of the following
conditions holds, then the proof is finished (just swap those vertices and the brush
number is going to change):

(A) fα(u) ≥ 0 and fα(v) ≤ 1,
(B) fα(u) = −1 and fα(v) 6= 1,
(C) fα(u) ≤ −2 and fα(v) ≥ 1.

Since the graph is connected but is not a clique, there exist three vertices u, v, z
that induce a path P = (u, v, z). Consider a cleaning sequence (v, u, z, α1, α2, . . . , αn−3)
where v is cleaned first, then u and z; the order of other vertices is not important. Since
deg(u) ≥ 1, fα(u) ≥ −1. Now, move some neighbours of u (if it is necessary) in front
of the triple (v, u, z) to get fα(u) ∈ {−1, 0} (note that z stays after u). We have a few
cases to consider:

• if fα(u) = 0 and fα(v) ≤ 3, then move z before v to get fα(v) ≤ 1 (note that
fα(u) does not change); we have (A),

• if fα(u) = 0 and fα(v) ≥ 4, then move any neighbour of u before v to get
fα(u) = −2 and fα(v) ≥ 2; we have (C),

• if fα(u) = −1 and fα(v) = 1, then move z before v to get fα(v) = −1; we have
(B),

• if fα(u) = −1 and fα(v) 6= 1, then (B) can be immediately used.

�

5. Graph products

The Cartesian product of graphs G and H , written G�H , is the graph with
vertex set V (G) × V (H) where (u, v) ∈ V (G�H) is adjacent to (u′, v′) ∈ V (G�H)
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when either u = u′ and vv′ ∈ E(H) or v = v′ and uu′ ∈ E(G). The strong product
of graphs G and H , written G⊠H , is the graph with vertex set V (G)× V (H) where
(u, v) ∈ V (G⊠H) is adjacent to (u′, v′) ∈ V (G⊠H) when either u = u′ and vv′ ∈ E(H)
or v = v′ and uu′ ∈ E(G) or vv′ ∈ E(H) and uu′ ∈ E(G).
We start with the Cartesian product of cliques.

Theorem 5.1. Fix any integer n ≥ 2. Then

n3

2
− n2

4
− n

8
≤ B(Kn�Kn) ≤





n3

2
if n is even

n3

2
− n

2
if n is odd.

In particular, B(Kn�Kn) = (1 + o(1))n3/2.

Proof. We first note that Kn�Kn contains 2n edge disjoint cliques of size n. From (2),
we know that B(Kn) = ⌊n2/4⌋. Using Theorem 3.7,

B(Kn�Kn) ≤
2n∑

i=1

B(Kn) = 2n⌊n2/4⌋

=

{
n3/2 if n is even

n3/2− n/2 if n is odd.

The lower bound comes from Theorem 3.3. Since Kn�Kn is d–regular with d =
2(n− 1), we get that

B(Kn�Kn) ≥ n2

4

(
d+ 1− 1

d+ 1

)
=

n2

4

(
2n− 1− 1

2n− 1

)

=
n3

2
− n2

4
− n

8
− 1

16
− 1

32n− 16

and the assertion follows provided that n ≥ 2. �

The proof of Theorem 5.1 can be easily generalized to an asymmetric case so it is
omitted.

Theorem 5.2. B(Km�Kn) = (1 + o(1))(m+ n)mn/4.

Next, we focus on the strong product, beginning with the product of two cycles.

Theorem 5.3. Fix any integers m,n ≥ 3. Then

B(Cm ⊠ Cn) = 3mn,

if at least one of m,n is even; otherwise (that is, if both m and n are odd)

3mn− 2min{m,n} − 1 ≤ B(Cm ⊠ Cn) ≤ 3mn.

In particular, B(Cm ⊠ Cn) = (1 + o(1))3mn.
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Proof. The upper bound follows from the fact that Cm⊠Cn consists of mn edge disjoint
copies of a graph H on 4 vertices, the triangle with an isolated edge attached. It is
clear that B(H) = 3 (clean vertex of degree 3 first). Theorem 3.7 yields

B(Cm ⊠ Cn) ≤ mnB(H) = 3mn.

While the non-constructive, probabilistic result (Theorem 3.3) gives a lower bound
of 2mn, it is not difficult to construct the cleaning sequence that requires much more
brushes. Let Cn = (v1, v2, . . . , vn) and Cm = (w1, w2, . . . , wm).
Suppose first that both m and n are even. Consider the following 3 phases that can

be used to clean the graph:

• 8mn
4

brushes are required to clean vertices (v2i, w2j), i ∈ {1, 2, . . . , n/2}, j ∈
{1, 2, . . . , m/2}. (Note that those vertices form an independent set so the order
of cleaning is not important and we need exactly 8 brushes per one vertex
cleaned.)

• 4mn
4

brushes are required to clean vertices (v2i−1, w2j), i ∈ {1, 2, . . . , n/2}, j ∈
{1, 2, . . . , m/2} since each vertex received 2 brushes from neighbours cleaned in
the previous phase. (Again, vertices form an independent set.)

• Remaining vertices are cleaned ‘for free’.

The total number of brushes required is 3mn.
Suppose now that exactly one of m,n is even. Without loss of generality, we can

assume that n is odd and m is even. Consider the following 5 phases that can be used
to clean the graph:

• 8 (n−1)m
4

brushes are required to clean vertices (v2i, w2j), i ∈ {1, 2, . . . , (n−1)/2},
j ∈ {1, 2, . . . , m/2}.

• 4 (n−3)m
4

brushes are required to clean vertices (v2i+1, w2j), i ∈ {1, 2, . . . , (n −
3)/2}, j ∈ {1, 2, . . . , m/2}.

• 6m
2
brushes are required to clean vertices (v1, w2j), j ∈ {1, 2, . . . , m/2}.

• 4m
2
brushes are required to clean vertices (vn, w2j), j ∈ {1, 2, . . . , m/2}.

• Remaining vertices are cleaned ‘for free’.

Again, the total number of brushes required is 3nm.
Finally, suppose that both n and m are odd. Without loss of generality, we can

assume that n < m. Consider the following 6 phases that can be used to clean the
graph:

• 8 (n−1)(m−1)
4

brushes are required to clean vertices (v2i, w2j), i ∈ {1, 2, . . . , (n −
1)/2}, j ∈ {1, 2, . . . , (m− 1)/2}.

• 4 (n−3)(m−1)
4

brushes are required to clean vertices (v2i+1, w2j), i ∈ {1, 2, . . . , (n−
3)/2}, j ∈ {1, 2, . . . , (m− 1)/2}.

• 6m−1
2

brushes are required to clean vertices (v1, w2j), j ∈ {1, 2, . . . , (m− 1)/2}.
• 4m−1

2
brushes are required to clean vertices (vn, w2j), j ∈ {1, 2, . . . , (m− 1)/2}.

• 2n−1
2

brushes are required to clean vertices (v2i, w1), i ∈ {1, 2, . . . , (n− 1)/2}.
• Remaining vertices are cleaned ‘for free’.

This time, the total number of brushes required is 3mn− 2n− 1. �
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Now, let us consider the strong product of cycle and clique.

Theorem 5.4. Fix any integers n ≥ 3 and m ≥ 1. If n is even then

B(Cn ⊠Km) = m2n

and if n is odd then

⌊m2(n− 3/4)⌋ ≤ B(Cn ⊠Km) ≤ m2n.

In particular, B(Cn ⊠Km) = (1 + o(1))m2n.

Proof. To get an upper bound, we note that Cn ⊠Km consists of n edge disjoint copies
of a graph H on 2m vertices: the union of Km and Km together with m2 edges between
Km and Km. We will prove that B(H) = m2 which provides the upper bound of the
proof by Theorem 3.7.
Note that each time a vertex inH is cleaned (it does not matter which one), each dirty

vertex in Km receives one brush. Thus, we have to introduce b(t) = max{2m+1−2t, 0}
new brushes at time t provided that a vertex in Km is cleaned. On the other hand, each
dirty vertex in Km receives one brush only if vertex in Km is cleaned. Thus, we have
to introduce b(t) = max{m+ 2 − 2t, 0} new brushes at time t when the first vertex of
Km is cleaned; the difference between b(t) and b(t) is at most m− 1. When the second
vertex of Km is cleaned the difference is at most m − 3, etc. When the last vertex of
Km is cleaned the difference can be as small as 1−m but this can at least balance the
difference we have when the first vertex is cleaned. The conclusion is that there are
essentially only two possible cleaning sequences that yield B(H): clean all vertices of
Km and then those of Km or vice-versa. This implies that B(H) = m2, which implies
that B(Cn ⊠Km) ≤ m2n.
Since Cn ⊠ Km contains (3m − 1)mn/2 edges, Theorem 3.3 gives a lower bound

of 3m2n/4. We propose a cleaning sequence which improves this trivial bound. Let
Cn = (v1, v2, . . . , vn) and V (Km) = {w1, w2, . . . , wm}. Suppose first that n is even.
We start by cleaning vertices (v2i, w1), i ∈ {1, 2, . . . , n/2}; this requires (n/2)(3m− 1)
brushes. Next we clean vertices of the form (v2i, w2) which requires an additional
(n/2)(3m− 3) brushes. We continue this way introducing (n/2)(m+1) brushes during
the round when vertices of the form (v2i, wm) are cleaned. The remaining graph can be
cleaned ‘for free’ and the total number of brushes used is

n

2

(
(3m− 1) + (3m− 3) + · · ·+ (m+ 1)

)
= m2n.

If n is odd, we proceed in a similar way cleaning vertices of the form (v2i, wk) (i ∈
{1, 2, . . . , (n−1)/2}) during the kth round (k ∈ {1, 2, . . . , m}). This requires m2(n−1)
brushes. After the last round, the remaining graph but a clique of size 2m can be
cleaned for free. Each vertex of K2m has exactly m brushes received from vertices that
are already cleaned. It is straightforward to see that it does not matter in which order
we clean the clique; the number of extra brushes needed is b(Km) = B(Km) = ⌊m2/4⌋.
This finishes the proof of the theorem. �
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