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Abstract. We consider the one-colour graph avoidance game. Using a high perfor-
mance computing network, we showed that the first player can win the game on 13,
14, and 15 vertices. Other related games are also discussed.

1. Introduction

In this note, we consider the one-colour graph avoidance game. Let G be a fixed
graph on n0 vertices, and let n ≥ n0 be an integer. The game between two players,
first and second, starts with n isolated vertices. In each turn, a player draws a new
edge. Players alternate turns, starting with the first player. We deal with simple graphs
only so it is forbidden to create parallel edges and loops. Both players have the same
goal, namely to try to avoid creating G as a subgraph. Since n ≥ n0 = |V (G)|, it is
unavoidable and eventually one player is forced to create a copy of G and lose the game.
Since this is a two-person, full information game with no ties, either the first player or
the second player has a winning strategy (namely, the strategy to achieve a maximal
G-free graph, that is, a G-free graph with the property that the addition of any edge
creates a copy of G).

We consider also two natural variants of the game we described. In the first one, the
players try to avoid all graphs from a given family G = {Gi : i ∈ S} (S can be finite
or infinite). In the second one, every edge played after the first move must be adjacent
to some previously played edge. In other words, at each stage of the game after the
first move all components but one are isolated vertices. This is known as the connected
variant of the graph avoidance game.

2. Avoiding a triangle

The well-known, interesting, and highly nontrivial game is when the players try to
avoid creating a triangle (see [3] for more details on this and other variations). The
outcomes for n ≤ 9 were reported by Seress [6]. For several years only two more values
were known (namely, for n = 10 and n = 11) and it was conjectured that the first
player wins if, and only if, n ≡ 2 (mod 4). However, Cater, Harary, and Robinson [2]
managed to show, using computer support, that the conjecture fails for n = 12. It
seems that there is no hope to solve the problem completely and to show who has a
winning strategy for any n. On the other hand, it has been shown that the first player
wins the connected variant of the game if, and only if, n is even [6].

In this paper we report that the first player wins the game on 13, 14, and 15 vertices
and conjecture that this is the case for each n ≥ 12. (We do admit that the conjecture
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is rather bold; the only reason to do so, beyond the values in Table 1, is that almost
all combinatorial games are first player win [7].) In order to obtain this result, we
generated a family H of all nonisomorphic triangle-free graphs on n vertices using
Brendan McKay’s nauty software package [5] for computing automorphism groups of
graphs and digraphs. Let h(n) = |{G : G ∈ H}| denote the number of such graphs
and let e(n) = max{|E(G)| : G ∈ H} be the number of edges in the densest graph
in this family. Let us note that e(n) = bn2/4c by Mantel’s theorem (an upper bound
follows from Turán’s theorem; for a lower bound consider the complete bipartite graph
Kbn/2c,dn/2e). It is clear that all graphs with e(n) edges have the property that the next
player to move loses the game. We call those graphs previous player wins graphs, and
denote corresponding subfamily by Pe(n). Now, we partition the set of all graphs on
e(n) − 1 edges into previous player wins graphs (Pe(n)−1) and next players wins ones
(Ne(n)−1). In order for a graph G to be in Ne(n)−1, it is required that there is an edge
e /∈ E(G) such that after adding e to G we get a graph which is in Pe(n). (The next
player should draw e to force the opponent to give up.) Since this is also a sufficient
condition,

Ne(n)−1 = {G ∈ H : G = H \ {e} for some H ∈ Pe(n) and e ∈ E(H)}
Pe(n)−1 = {G ∈ H : |E(G)| = e(n)− 1} \Ne(n)−1.

Those operations can be done easily with the support of the nauty software package
to remove isomorphisms. Now, we can determine the families Pi and Ni (i = e(n) −
2, e(n)− 3, . . . , 0) recursively. If the only graph with no edge in H (empty graph) is in
N0, then the first player wins the game (we put w(n) = 1); otherwise the second player
has a winning strategy (w(n) = 2). A UNIX script used to solve the problem can be
found in [8]. Below we present the result of our program (Table 1).

n w(n) e(n) h(n)
3 2 2 3
4 2 4 7
5 2 6 14
6 1 9 38
7 2 12 107
8 2 16 410
9 2 20 1,897
10 1 25 12,172
11 2 30 105,071
12 1 36 1,262,180
13 1 42 20,797,002
14 1 49 467,871,369
15 1 56 14,232,552,452

Table 1. Triangle avoidance game.

Let us finish this section with one more problem related to this game. Suppose that
the player L who loses the game is trying to avoid a triangle for as long as possible; the
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goal of the other player, W , is the opposite. The payoff to L is the number of moves
until triangle is created, and he obviously seeks the highest possible payoff. Let f(n)
denote the smallest payoff over all possible winning strategies of W , assuming L uses
an optimal strategy.

Clearly, f(n) ≤ e(n) = bn2/4c. It follows from Tables 5–7 (see the Appendix) that
f(13) ≤ 37 < 42 = e(13), since all maximal triangle free graphs with an odd number of
edges have at most 37 edges (recall that the first player has a winning strategy), and
that f(15) ≤ 49 < 56 = e(15). Unfortunately, no non-trivial upper bound for f(14) can
be obtained without investigating the game in a more sophisticated way. Nevertheless,

it seems natural to conjecture that limn→∞
f(n)
e(n)

= 0.

Consider the following stochastic process. We begin with the empty graph on n
vertices. At each step of the process, we add an edge chosen uniformly at random
from the collection of pairs of vertices that neither appears as existing edges nor form a
triangle when added as edges. We know that asymptotically almost surely the process
ends after Θ(n3/2

√
log n) steps (that is, a maximal triangle free graph is obtained) [1].

Is it true that f(n) = Θ(n3/2
√

log n)?

3. Other related games

Using exactly the same approach as before and the same UNIX script, one can analyze
the square (C4) avoidance game and the game where players try to avoid cycles of length
at most 4 (that is, G = {C3, C4}). Both classic and connected variants are studied and
the results are presented in Tables 2 and 3. In order to analyze a connected variant
of the game, all “disconnected” graphs (that is, graphs with at least two nontrivial
components) have to be removed at each stage of the process.

n w(n) e(n) h(n)
4 2 4 8
5 1 6 18
6 1 7 44
7 1 9 117
8 1 11 351
9 1 13 1,230
10 1 16 5,069
11 1 18 25,181
12 1 21 152,045
13 2 24 1,116,403
14 2 27 9,899,865
15 1 30 104,980,369
16 1 33 1,318,017,549

n w(n) h(n)
4 2 7
5 1 15
6 1 34
7 2 91
8 1 277
9 1 1,017
10 1 4,406
11 1 22,908
12 1 143,129
13 2 1,075,389
14 2 9,672,233
15 2 103,434,937
16 1 1,305,167,374

(a) Classic version (b) Connected variant

Table 2. C4 avoidance game.
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n w(n) e(n) h(n)
4 1 3 6
5 2 5 11
6 2 6 23
7 2 8 48
8 1 10 114
9 2 12 293
10 1 15 869
11 1 16 2,963
12 1 18 12,066
13 2 21 58,933
14 2 23 347,498
15 2 26 2,455,693
16 2 28 20,592,932
17 2 31 202,724,920

n w(n) h(n)
4 1 5
5 2 9
6 1 17
7 2 35
8 1 82
9 2 219
10 1 683
11 1 2,476
12 1 10,643
13 1 54,288
14 2 329,768
15 1 2,375,047
16 2 20,147,694
17 1 199,741,517

(a) Classic version (b) Connected variant

Table 3. C3 and C4 avoidance game.

Another natural related game is that of odd cycle avoidance, in which the first player
to create an odd cycle loses the game (that is, G = {C2k+1 : k ∈ Z+}). It has been
shown that the first player wins the classic game if, and only if, n ≡ 2 (mod 4) [2]. It
is also not difficult to see that the following theorem holds.

Theorem 3.1. The first player wins the connected variant of the odd cycle avoidance
game on n ≥ 3 if, and only if, n is even.

Proof. It is clear that at each point of the game the graph we play on is bipartite. The
game ends when a complete bipartite graph Kn1,n2 (n1, n2 ≥ 1 and n1 + n2 = n) is
created so that the next player to move has to create an odd cycle and lose. If n is odd,
one of n1, n2 is even and the number of edges in Kn1,n2 (and the number of moves in
the game at the same time) is exactly n1n2 which is even. This implies that the second
player wins the game if n is odd.

In order to show that the first player wins the game if n is even, we propose the
following simple strategy. The first player can ensure that after each of his moves, the
only nontrivial component is safe, that is, the two partite classes have odd sizes. This
will finish the proof; n1n2 is odd and after creating Kn1,n2 the second player is forced
to give up.

The claim is proved by induction. After the first move, the main component consists
of an isolated edge and the base case holds. For the inductive step, assume that the
main component is safe. Suppose first that the second player joins an isolated vertex x
to vertex y from the main component so that it is not safe anymore. Since the number
of vertices is even, there is at least one more isolated vertex z that can be joined to y by
the first player to keep the component safe. Suppose now that the second player joins
two vertices in the main component. We will show that the first player can also join two
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vertices in the main component so it remains safe. Indeed, suppose for a contradiction
that he is forced to join an isolated vertex. This means that the main component at
that point of the game is a complete bipartite graph. But, since the component is safe,
the number of edges in the complete bipartite graph is odd which gives a contradiction
(the number of moves/edges up to this point is even). ¤

Finally, let us present results on the game where players try to avoid odd cycles and
the square, that is, G = {C2k+1 : k ∈ Z+} ∪ {C4} (Table 4). This game is motivated
by the Zarankiewicz problem which asks how many edges can be added to a bipartite
graph while avoiding a specific bipartite subgraph. The Kővári-Sós-Turán theorem gives
a bound on the Zarankiewicz problem when the subgraph to be avoided is a complete
bipartite graph [4]. For example, a bipartite graph with 2n vertices and no 4-cycles
has O(n3/2) edges. This bound is within a constant factor of optimal, as there exists
a bipartite graph based on the projective plane that has Ω(n3/2) edges. (For a fixed
prime power q, let Gq = (P, L, E) be a bipartite graph with bipartition P,L where P
and L denote the set of points and, respectively, lines in the projective plane. A point
is joined to a line if it is contained in it. Then Gq has 2(q2 + q + 1) many vertices and
is (q + 1)-regular.)

Introducing functions f(n), e(n) for this game as before, we get that f(n) ≤ e(n) =

Θ(n3/2). One could try to prove that limn→∞
f(n)
e(n)

= 0. Moreover, based on the values

in Table 4(b), one could conjecture that w(n) = 1 if, and only if, n is even.
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n w(n) e(n) h(n)
4 1 3 6
5 2 4 10
6 1 6 21
7 2 7 39
8 1 9 86
9 2 10 182
10 1 12 440
11 2 14 1,074
12 1 16 2,941
13 2 18 8,424
14 1 21 26,720
15 2 22 90,883
16 1 24 340,253
17 2 26 1,384,567
18 2 29 6,186,907
19 2 31 30,219,769
20 1 34 161,763,233
21 2 36 946,742,190

n w(n) h(n)
4 1 5
5 2 8
6 1 15
7 2 27
8 1 57
9 2 121
10 1 298
11 2 755
12 1 2,158
13 2 6,485
14 1 21,509
15 2 76,239
16 1 295,550
17 2 1,238,458
18 1 5,664,971
19 2 28,189,986
20 1 153,086,780
21 2 906,020,372

(a) Classic version (b) Connected variant

Table 4. C4 and odd cycle avoidance game.

5. Appendix
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i |Pi| |Ni|
0 0 1
1 1 0
2 0 2
3 4 0
4 0 9
5 18 1
6 1 44
7 97 7
8 8 254
9 557 118
10 63 1,745
11 2,941 1,958
12 723 12,556
13 14,071 20,957
14 8,076 80,425
15 60,729 147,866
16 57,078 392,781
17 218,032 652,881
18 223,016 1,267,998
19 553,047 1,674,464
20 485,087 2,392,364
21 846,195 2,345,213

i |Pi| |Ni|
22 589,428 2,440,325
23 728,346 1,733,458
24 408,653 1,313,910
25 344,083 705,468
26 176,223 391,913
27 92,534 186,717
28 55,414 72,767
29 16,228 39,687
30 14,034 9,741
31 2,126 7,704
32 3,016 1,063
33 237 1,402
34 576 99
35 24 245
36 109 9
37 3 40
38 19 0
39 0 7
40 4 0
41 0 1
42 1 0

4,900,802 15,896,200

Table 5. Triangle avoidance game on 13 vertices – more details.
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i |Pi| |Ni|
0 0 1
1 1 0
2 0 2
3 4 0
4 0 9
5 19 0
6 0 45
7 105 0
8 0 265
9 689 2
10 1 1,892
11 5,331 24
12 8 15,588
13 45,407 226
14 47 132,234
15 367,112 4,712
16 689 992,324
17 2,286,986 185,146
18 22,079 5,622,043
19 8,471,611 3,178,199
20 437,448 21,048,208
21 17,918,821 17,148,707
22 2,818,704 47,451,336
23 24,909,644 38,026,461
24 6,780,648 61,775,022
25 23,759,354 41,111,571

i |Pi| |Ni|
26 7,363,526 46,025,778
27 15,012,885 23,391,750
28 4,052,865 20,318,024
29 6,242,870 7,593,500
30 1,295,418 5,860,711
31 1,823,812 1,616,366
32 303,600 1,263,284
33 413,237 273,886
34 64,601 228,666
35 78,530 44,171
36 13,248 37,350
37 13,358 7,275
38 2,566 5,753
39 2,135 1,207
40 474 873
41 342 201
42 87 136
43 58 34
44 16 21
45 11 6
46 3 4
47 2 1
48 1 1
49 1 0

124,508,354 343,363,015

Table 6. Triangle avoidance game on 14 vertices – more details.



A NOTE ON THE ONE-COLOUR AVOIDANCE GAME ON GRAPHS 9

i |Pi| |Ni|
0 0 1
1 1 0
2 0 2
3 4 0
4 0 9
5 19 0
6 0 45
7 102 3
8 2 264
9 610 87
10 47 1,881
11 3,679 1,874
12 1,283 15,441
13 23,487 28,256
14 21,097 141,735
15 156,900 355,059
16 274,669 1,305,764
17 1,050,178 3,649,591
18 2,513,178 10,723,860
19 6,507,950 28,265,080
20 15,621,442 68,482,373
21 33,175,092 152,068,065
22 64,466,478 303,754,074
23 123,515,139 532,151,068
24 171,538,611 868,077,711
25 297,014,462 1,163,873,140
26 297,831,236 1,515,119,857
27 443,313,245 1,539,153,335
28 337,166,250 1,571,786,724

i |Pi| |Ni|
29 410,418,030 1,210,382,897
30 245,748,052 972,418,343
31 235,296,884 580,809,896
32 119,812,722 372,666,826
33 85,407,004 185,945,250
34 43,769,831 94,943,301
35 20,883,865 45,973,590
36 13,306,206 17,528,616
37 3,740,899 10,016,187
38 3,449,149 2,537,209
39 528,324 2,020,933
40 760,394 306,059
41 62,712 375,043
42 144,912 32,409
43 6,640 63,906
44 24,812 3,142
45 661 10,217
46 4,012 283
47 64 1,595
48 650 24
49 7 254
50 110 0
51 0 40
52 19 0
53 0 7
54 4 0
55 0 1
56 1 0

2,977,561,125 11,254,991,327

Table 7. Triangle avoidance game on 15 vertices – more details.


