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Abstract. In this paper, we study the vertex pursuit game of Cops and Robbers
where cops try to capture a robber loose on the vertices of a graph. The minimum
number of cops required to win on a given graph G is the cop number of G. We
present asymptotic results for the game of Cops and Robbers played on a random
graph G(n, p) focusing on the case when the cop number does not grow with the
size of a graph. A few open problems are discussed.

1. Introduction

The game of Cops and Robbers was introduced independently by Nowakowski and
Winkler [14], and Quilliot [15] over twenty years ago. The game is played on a fixed
graph G and is our focus in this paper. We will always assume that G is undirected,
simple, and finite. There are two players, a set of k cops, where k ≥ 1 is a fixed
integer, and the robber. The cops begin the game by occupying any set of k vertices
(in fact, for a connected G, their initial position does not matter). The robber then
chooses a vertex, and the cops and the robber move in alternate rounds. The players
use edges to move from vertex to vertex. More than one cop is allowed to occupy a
vertex, and the players may remain on their current positions. The players know each
others current locations. The cops win and the game ends if at least one of the cops
eventually occupies the same vertex as the robber; otherwise, that is, if the robber
can avoid this indefinitely, he wins. As placing a cop on each vertex guarantees that
the cops win, we may define the cop number, written c(G), which is the minimum
number of cops needed to win on G. The cop number was introduced by Aigner and
Fromme [1] who proved (among other things) that if G is planar, then c(G) ≤ 3.

There are other well-studied versions of this game. Let us mention the one studied
in [16], where at any point of the game the robber can run at great speed to any other
vertex along a path of the graph. He is not permitted to run through a cop, however.
Each cop either stands on a vertex or is in a helicopter (that is, is temporarily removed
from the game). The robber can see the helicopter approaching its landing spot and
may run to a new vertex before the helicopter actually lands. There are two two
possible variants of this game: the robber is invisible (and so to capture him the cops
must methodically search the whole graph) or visible. For more results on vertex
pursuit games such as Cops and Robbers, the reader is directed to the survey [2].
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1



2 PAWEÃL PRAÃLAT

Our main results refer to the probability space G(n, p) = (Ω,F ,P) of random
graphs, where Ω is the set of all graphs with vertex set [n] = {1, 2, . . . , n}, F is the
family of all subsets of Ω, and for every G ∈ Ω

P(G) = p|E(G)|(1− p)(
n
2)−|E(G)| .

It can be viewed as a result of
(

n
2

)
independent coin flipping, one for each pair of

vertices, where the probability of success (that is, drawing an edge) is equal to p
(p = p(n) can tend to zero with n). We say that an event holds asymptotically almost
surely (a.a.s.) if it holds with probability tending to 1 as n →∞.

Bonato, Wang, and the author of this paper started investigating vertex pursuit
games in dense random graphs and their generalizations used to model complex
networks with a power-law degree distribution (see [8, 9]). From their results it
follows that if p = o(1) and np = nα+o(1), where 1/2 < α ≤ 1, then a.a.s.

c(G(n, p)) = Θ(log n/p) = n1−α+o(1),

a.a.s. c(G(n, p)) = (1+o(1)) log1/(1−p) n for a constant p < 1, and c(G(n, n−1/2+o(1))) =

n1/2+o(1) a.a.s. On the other hand, Bollobás, Kun, and Leader [6] showed that the
cop number of G(n, p) is always bounded from above by n1/2+o(1) and this bound is
achieved at the other end of the spectrum, that is, for sparse random graphs. More
precisely, they showed that c(G(n, p)) ≤ 160000

√
n log n for p ≥ 2.1 log n/n and

c(G(n, p)) ≥ 1

(np)2
n

1
2

log log(np)−9
log log(np)

for np → ∞. Since if either np = no(1) or np = n1/2+o(1), then a.a.s. c(G(n, p)) =
n1/2+o(1), it would be natural to assume that the cop number of G(n, p) is close to√

n also for np = nα+o(1), where 0 < α < 1/2. ÃLuczak and the author of this paper
showed that the actual behaviour of c(G(n, p)) is slightly more complicated [13]. (See
also [7] for a similar result for an extension of Cops and Robbers, distance k Cops
and Robbers, where the cops win if they are distance at most k from the robber.)
The function f : (0, 1) → R defined as

f(x) =
log c̄(G(n, nx−1))

log n
,

where c̄(G(n, p)) denotes the most likely value of the cop number for G(n, p), has a
characteristic zigzag shape (see Figure 1).

In this paper, we focus on a constant cop number that does not grow with the size
of the graph. In particular, this answers a question when a random graph is cop-
win. So-called cop-win graphs (that is, graphs G with c(G) = 1) were structurally
characterized in [14, 15]. If x is a vertex, then define N [x] to be x along with
the vertices joined to x. The cop-win graphs are exactly those graphs which are
dismantlable: there exists a linear ordering (xj : 1 ≤ j ≤ n) of the vertices so that
for all j ∈ {2, 3, . . . , n}, there is an i < j such that

N [xj] ∩ {x1, x2, . . . , xj} ⊆ N [xi] ∩ {x1, x2, . . . , xj}.
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Figure 1. The ‘zigzag’ function f .

This provides a useful tool to construct cop-win graphs. On the other hand, gen-
erating graphs with a constant cop number different than one is a challenging and
nontrivial task.

It follows from the previous results that in order to get a constant cop number,
p(n) has to tend to 1 with n. Below we present the main theorem of this paper.

Theorem 1.1. Let k ∈ Z+ and

p = p(n) = 1−
(

k log n + an

n

) 1
k

.

Then the following holds:

• if an → −∞, then a.a.s. c(G(n, p)) ≤ k,
• if an → a ∈ R, then the probability that c(G(n, p)) = k tends to 1 − e−e−a/k!;

c(G(n, p)) = k + 1 otherwise,
• if an →∞, then a.a.s. c(G(n, p)) ≥ k + 1.

(Let us note that if we add an additional condition that the sequence (|an|) does not
grow too fast with n (say, |an| = no(1)), then inequalities above can be replaced by
equalities.)

On the other hand, it is possible that p(n) tends to 1 and the cop number grows
together with n. In this case clearly p(n) = 1− no(1) and c(G(n, p)) = o(log n).

Theorem 1.2. Let 1 ¿ f(n) = o(log n) and p = p(n) = 1 − n−1/f(n) = 1 − o(1).
Then a.a.s. c(G(n, p)) = (1 + o(1))f(n).

The domination number of a dense random graph, used to show an upper bound
on the cop number, is discussed in Section 2. The main result is shown in Section 3.
We conclude the paper with a few open problems stated in Section 4.
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2. Domination number

In order to prove the upper bound we require some background on the domination
number of a graph. A set of vertices S is a dominating set in G if each vertex not
in S is joined to some vertex of S. The domination number of G, written γ(G), is
the minimum cardinality of a dominating set in G. A straightforward observation
is that c(G) ≤ γ(G) (place a cop on each vertex of dominating set with minimum
cardinality). However, if n ≥ 1, then c(Pn) = 1 (where Pn is a path with n vertices)
and γ(Pn) =

⌈
n
3

⌉
so the bound while useful, is far from tight in general. It is not

surprising that the bound is of use when we deal with random graphs.
It has been shown that the domination number of a random graph has a.a.s. two

point concentration for a constant p < 1 or p = p(n) tending to zero sufficiently
slowly [17]. Here we focus on p(n) tending to 1 with n.

Theorem 2.1. Let k ∈ Z+ and

p = p(n) = 1−
(

k log n + an

n

) 1
k

.

Then

lim
n→∞

P(γ(G(n, p)) ≤ k) =





0 if an →∞
1− e−e−a/k! if an → a ∈ R
1 if an → −∞.

(Again, let us note that inequalities above can be replaced by equalities provided
that, say, |an| = no(1).)

Before we move to the proof of this theorem let us mention that for k = 1 we get
a well-known result since the threshold for having a vertex dominating a graph G
corresponds to the threshold for isolated vertices in the complement of G. (See, for
example, [12, 5] or any textbook on random graphs.)

We need the following lemma which is known as a convergence of moments method.

Lemma 2.2. Consider a sequence of probability spaces (Ωn,Fn,Pn). Let An
1 , A

n
2 , . . . , A

n
rn
∈

Fn,

Bn
l =

∑
1≤j1<...jl≤rn

P

(
l⋂

i=1

An
ji

)
,

and let Sn be the number of events among An
1 , A

n
2 , . . . , A

n
rn

that actually occur, that
is,

Sn =
rn∑
i=1

IAn
i
.

Suppose that for some λ, limn→∞ Bn
l = λl

l!
for all fixed positive integers l. Then Sn

tends to the Poisson distribution with parameter λ, that is,

lim
n→∞

P(Sn = l) = e−λ λl

l!
.

Now we are ready to show the main result of this section.
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Proof of Theorem 2.1. Let k ∈ Z+,

p = p(n) = 1−
(

k log n + an

n

) 1
k

,

and an → a ∈ R as n → ∞. For X ⊆ [n], |X| = k, and v ∈ [n] \ X, let A(X, v)
denote the event that vertex v is adjacent to at least one vertex in X and let A(X)
denote the event that X is a dominating set of a random graph G(n, p), that is,
A(X) =

⋂
v∈[n]\X A(X, v). It is clear that

Bn
1 =

∑

X⊆[n],|X|=k

P (A(X))

=

(
n

k

) (
1− (1− p)k

)n−k

= (1 + o(1))
nk

k!

(
1− k log n + an

n

)n−O(1)

= (1 + o(1))
e−a

k!
= (1 + o(1))λ,

where λ := e−a

k!
.

Let l ≥ 2, Xi ⊆ [n], |Xi| = k (1 ≤ i ≤ l), Xi 6= Xi′ for 1 ≤ i < i′ ≤ l, and

v ∈ [n] \⋃l
i=1 Xi. Then Bonferroni’s inequality can be used to get that

P

(
l⋂

i=1

A(Xi, v)

)
= 1− P

(
l⋃

i=1

A(Xi, v)c

)

≤ 1−
l∑

i=1

P(A(Xi, v)c) +
∑

1≤i<i′≤l

P(A(Xi, v)c ∩ A(Xi′ , v)c)

= 1− l(1− p)k + O((1− p)k+1)

= 1− l

(
k log n + an

n

)
+ O

((
log n

n

) k+1
k

)
.

Since edges are chosen independently and a graph induced by the set
⋃l

i=1 Xi forms
a clique a.a.s.,

P

(
l⋂

i=1

A(Xi)

)
= (1 + o(1))

∏

v∈[n]\⋃ Xi

P

(
l⋂

i=1

A(Xi, v)

)

≤ (1 + o(1))

(
1− l

(
k log n + an

n

)
+ O

((
log n

n

) k+1
k

))n−O(1)

= (1 + o(1))n−kle−al = O(n−kl). (1)
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Now,

Bn
l =

∑
∗
P

(
l⋂

i=1

A(Xi)

)
=

∑
∗∗
P

(
l⋂

i=1

A(Xi)

)
+

∑
∗∗∗
P

(
l⋂

i=1

A(Xi)

)
, (2)

where
∑

∗ is taken over all distinct sets Xi (i = 1, 2, . . . , l) such that |Xi| = k
and Xi ⊆ [n];

∑
∗∗ denotes the sum over all such sets that satisfy the property

|⋃l
i=1 Xi| = kl (that is, all

(
l
2

)
intersections of two sets are empty);

∑
∗∗∗ contains all

remaining terms. From (2) and (1) it follows that

Bn
l = (1 + o(1))

(
n

k

)(
n− k

k

)
· · ·

(
n− (l − 1)k

k

)
1

l!

((
1− (1− p)k

)n−kl
)l

+ O(nkl−1) ·O(n−kl)

= (1 + o(1))

(
nk

k!

)l
1

l!
n−kle−al + o(1)

= (1 + o(1))
λl

l!
.

Thus, Lemma 2.2 implies that Sn, the number of dominating sets of cardinality k,
tends to the Poisson distribution with parameter λ and the assertion follows. ¤

3. Proof of the main result

In order to obtain the lower bound, we can use the following adjacency property.
We say that G is (1, k)-existentially closed (or (1, k)-e.c.) if for each k-set S of vertices
of G and vertex u 6∈ S, there is a vertex z /∈ S not joined to a vertex in S and joined
to u. If G is (1, k)-e.c., then c(G) > k (when at most k cops are used, the robber
may use the property to escape to a vertex not joined to any vertex occupied by a
cop). We use this to show the following.

Lemma 3.1. Fix k ∈ Z+. If

p = p(n) < 1−
(

(k + 1) log n + log log n

n

) 1
k

,

then c(G(n, p)) > k a.a.s.

Proof. Fix k ∈ Z+. As we already mentioned we can assume (without loss of gener-
ality) that p(n) tends to 1 as n goes to infinity; otherwise the cop number grows with
n.

Fix S, a k-subset of vertices and a vertex u not in S. For a vertex x ∈ [n]\(S∪{u}),
the probability that the vertex x is joined to u and to no vertex of S is p(1 − p)k.
Since edges are chosen independently, the probability that no suitable vertex can be
found for this particular S and u is (1− p(1− p)k)n−k−1.
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Let X be the random variable counting the number of S and u for which no suitable
x can be found. We then have that

EX =

(
n

k

)
(n− k)

(
1− p(1− p)k

)n−k−1

= O(nk+1)

(
1− (k + 1) log n + 0.5 log log n

n

)n−k−1

= O

(
1√

log n

)
= o(1).

The proof now follows by the Markov’s inequality. ¤
Finally we are ready to prove the main theorem.

Proof of the Theorem 1.1. Fix k ∈ Z+. Given Theorem 2.1 and Lemma 3.1, it is
enough to show that the cop number is greater than k if

(
k log n− log log n

n

) 1
k

≤ 1− p ≤
(

(k + 1) log n + log log n

n

) 1
k

and there is no dominating set of cardinality k.
We say that a vector (r, c1, c1, . . . , ck) is dangerous if

⋂k
i=1 N c(ci) ⊆ N c(r). Vertex r

is dangerous if there is a vector (c1, c2, . . . , ck) such that (r, c1, c1, . . . , ck) is dangerous.
It is clear that a graph with the cop number at most k must have at least one
dangerous vector. If the game can be won by the cops, then a position at the end
of the game yields such a vector. It does not matter where the robber goes, at least
one cop can capture him and the game is finished (in other words, the robber should

escape to
⋂k

i=1 N c(ci) but those vertices are not reachable).

The expected number of dangerous vectors with |⋂k
i=1 N c(ci)| = l is at most

O(nk+l+1)(1− p)(k+1)l
(
1− (1− p)k

)n−k−l−1

= O(nk+l+1)

(
log n

n

) (k+1)l
k

(
1− k log n− log log n

n

)n−O(1)

≤ n1− l
k
+o(1),

provided l is a constant. For l = l(n) tending to infinity with n, we get that the
expectation is at most

O(nk+l+1)(1− p)(k+1)l = O(nk+l+1)

(
(1 + o(1))(k + 1) log n

n

) (k+1)l
k

= n−l/k(1+o(1))
(
(1 + o(1))(k + 1) log n

)l(1+1/k)

= n−l/k(1+o(1)).

Thus, a.a.s. there is no dangerous vector with l > k by the Markov’s inequality.
Moreover, l ≥ 1 since it is assumed that there is no dominating set of cardinality k.
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Thus, the Markov’s inequality can be used again to show that a.a.s. the number of
dangerous vertices (which can be bounded from above by the number of dangerous
vectors) is at most n1−1/k+o(1).

We will show now that the robber can avoid dangerous configurations. Note that,
since a.a.s. G(n, p) is connected, without loss of generality one can assume that at
the beginning of the game all cops are placed at the same vertex w of degree at most
n − Ω(log n) (there must be a vertex of degree at most the average one). Indeed,
if there is a winning strategy for cops that starts with an initial configuration C,
then cops can always move from w to C and continue from there. The robber goes
to any vertex in N c(w) and the corresponding vector is not dangerous a.a.s. (since

there is no dangerous vector with |⋂k
i=1 N c(ci)| = l = Ω(log n) a.a.s.). In order to

force the robber occupying vertex r (that is not dangerous) to go to a dangerous

vertex cops must occupy vertices c1, c2, . . . , ck and (
⋂k

i=1 N c(ci)) \ N c(r) contains s

dangerous vertices only, that is, the robber has to escape to
⋂k

i=1 N c(ci) to be safe
but the only reachable vertices are dangerous. (Note that s ≥ 1 since (r, c1, c2, . . . , ck)
is not dangerous.) Using exactly the same argument as before, we get that

∣∣∣∣∣

(
k⋂

i=1

N c(ci)

)
∩N c(r)

∣∣∣∣∣ = t ≤ k.

The expected number of vertices c1, c2, . . . , ck with the property that
⋂k

i=1 N c(ci)

contains s dangerous vertices (s ≥ 1) and |⋂k
i=1 N c(ci)| = s + t (0 ≤ t ≤ k) is at

most

k∑
t=0

∑
s≥1

nk+t
(
n1− 1

k
+o(1)

)s

(1− p)k(s+t)(1− (1− p)k)n−k−s−t =
k∑

t=0

n−1/k+o(1) = o(1).

Therefore, a.a.s. there is no way to force the robber to move to a dangerous vertex
and the proof is complete. ¤

In order to prove the upper bound in Theorem 1.2, one can show that any fixed
set of

K = f(n)

(
1 +

1

log log n

)

vertices is a dominating set a.a.s. The lower bound follows from the fact that a.a.s.
G(n, p) is (1, k)-e.c. with

k = f(n)

(
1− 1

log log n

)
.

The argument is exactly the same as what we had before and therefore is omitted.
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4. Open problems

It follows from the result of Bollobás, Kun, and Leader [6] (see also [13]) that the
cop number of G(n, p) is O(

√
n log n) for np ≥ 2.1 log n. This supports then the con-

jecture of Meyniel that c(G) = O(
√
|V |) for any connected graph G. In [11] one can

read “that Meyniel conjectures c(G) = O(
√
|V |), which would be best possible” so it

seems that Meyniel was able to construct a family of graphs with large cop numbers
but unfortunately we do not know his construction. The Zigzag Theorem [13] implies
only that a.a.s. c(G) = n1/2+o(1) for G ∈ G(n, n−1/(2k)) (k = 1, 2, . . . ), but it suggests
that one should search for a candidate among graphs with the average degree around√
|V |. We show that this is indeed the case. Before we move to the main result of

this section, we need to introduce a few more definitions.
According to the combinatorial definition, a finite projective plane consists of a set

of lines and a set of points with the following properties:

• given any two distinct points, there is exactly one line incident with both of
them,

• given any two distinct lines, there is exactly one point incident with both of
them,

• there are four points such that no line is incident with more than two of them.

One can show that a projective plane has the same number of lines as it has points.
A finite projective plane has q2 +q+1 points, where q is an integer called the order of
the projective plane. A projective plane of order q has q +1 points on every line, and
q + 1 lines passing through every point. It has been shown that there exists a finite
projective plane of order q, if q is a prime power (that is, q = pa for a prime number
p and a ≥ 1), and for all known finite projective planes, the order q is a prime power.
The existence of finite projective planes of other orders is an open question.

Finally, for a fixed prime power q, let Gq = (P,L, E) be a bipartite graph with
bipartition P, L where P and L denote the set of points and, respectively, lines in
the projective plane. A point is joined to a line if it is contained in it. Then Gq has
2(q2 + q + 1) many vertices and is (q + 1)-regular.

Theorem 4.1. c(Gq) = q + 1.

Proof. In order to prove that c(Gq) ≥ q + 1, we show that Gq is (1, q)-e.c. Fix
S = SL ∪ SP a q-subset of vertices (SL ⊂ L, SP ⊂ P ) and a vertex u not in S.
Without loss of generality (by the duality of projective geometry), we can assume
that u ∈ L. By the construction, each vertex in SL controls exactly one neighbour
of u. Since the graph is bipartite, each vertex in SP can control (that is, occupy) at
most one neighbour of u. Since Gq is q + 1 regular, the assertion follows.

In order to show that c(Gq) ≤ q + 1, we present the following winning strat-
egy for (q + 1) cops. The cops begin the game by occupying any set of points
c1, c2, . . . , cq+1. If the robber chooses a line v to start with, then each neighbour of
v (points b1, b2, . . . , bq+1) can be assigned to the unique cop and the cop occupying
ci can be moved to line li incident with both ci and bi to control all neighbours of v.
The robber should stay in v but he will be captured in the next round. Otherwise,
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that is, if the robber chooses a point to start with, then one cop can be moved to
attack the robber so that the robber has to escape to a line u. In the next round,
the cop occupying a line is chasing the robber by moving to v; the other cops can be
moved to lines to control remaining neighbours of u. ¤
Corollary 4.2. There is an infinite family of graphs {Ĝn = ([n], Ên)} with c(Ĝn) >√

n/8 and c(Ĝn) >
√

n/2− n0.2625 for n sufficiently large.

Proof. Fix any n ∈ N and let q be the largest prime power such that 2(q2+q+1) ≤ n.

(It is straightforward to show that q ≥
√

n/2 − 1 for n ≥ 2.) We construct Ĝn by
contracting into a single vertex a leaf of a path of length n − 2(q2 + q + 1) and any
vertex of the graph Gq based on the projective plane of order q. It is easy to show

that c(Ĝn) = c(Gq) = q + 1 (the last equality follows from Theorem 4.1). In fact,
Berarducci and Intrigila [4] proved that if G retracts to an induced subgraph H (that
is, there is a homomorphism f : V (G) → V (H) which is the identity on V (H)), then
c(G) = c(H).

Now, the theorem follows from a well-known Chebyshev’s Theorem that says that
there exists a prime number between x and 2x for any integer x ≥ 2. For sufficiently
large x, one can use a stronger result which says that there is always a prime in the
interval [x− x0.525, x] (see [3] for more details). ¤

Now we are ready to formulate two open questions. Let c(n) denote the maximum
of c(G) over all connected graphs with n vertices. It follows from Corollary 4.2 that

c(n) >
√

n/2− n0.2625 for n sufficiently large.

Question 1: Is it possible to improve a lower bound of c(n)?

On the other hand Frankl showed that c(n) < (1 + o(1))n log log n
log n

[11]. A very

little improvement has been made up to date. It took more than twenty years to
improve an upper bound to O(n/ log n). This result is due to Chiniforooshan [10]
and is the best known upper bound of c(n) (See also [7] for a similar result for an
extension of Cops and Robbers, distance k Cops and Robbers, where the cops win
if they are distance at most k from the robber.) Recall that Meyniel conjectured
that c(n) = O(

√
n) so we are far away from what we believe is true. Therefore, an

innocent looking upper bound of n1−ε for any fixed ε > 0 would be very significant
progress.

Question 2: Is it possible to improve an upper bound of c(n)?
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