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Abstract. In this paper, we study the vertex pursuit game of Cops and Robbers

where cops try to capture a robber on the vertices of the graph. The minimum
number of cops required to win on a given graph G is the cop number of G. We
present asymptotic results for the game of Cops and Robber played on a random
graph G(n, p) for a wide range of p = p(n). It has been shown that the cop number
as a function of an average degree forms an intriguing zigzag shape.

1. Introduction

The game of Cops and Robbers, introduced independently by Nowakowski and Win-
kler [11] and Quilliot [13] over twenty years ago, is played on a fixed graph G, and is
our focus in this paper. We will always assume that G is undirected, simple, and finite.
There are two players, a set of k cops, where k ≥ 1 is a fixed integer, and the robber.
The cops begin the game by occupying any set of k vertices (in fact, for a connected G,
their initial position does not matter). The robber then chooses a vertex, and the cops
and robber move in alternate rounds. The players use edges to move from vertex to
vertex. More than one cop is allowed to occupy a vertex, and the players may remain
on their current positions. The players know each others current locations. The cops
win and the game ends if at least one of the cops eventually occupies the same vertex
as the robber; otherwise, that is, if the robber can avoid this indefinitely, he wins. As
placing a cop on each vertex guarantees that the cops win, we may define the cop num-

ber, written c(G), which is the minimum number of cops needed to win on G. The cop
number was introduced by Aigner and Fromme [1] who proved (among other things)
that if G is planar, then c(G) ≤ 3. For more results on vertex pursuit games such as
Cops and Robbers, the reader is directed to the surveys on the subject [2, 8, 9]. Here
we mention only that the most important open problem in this area is the Meyniel’s
conjecture (communicated by Frankl [7]). It states that c(n) = O(

√
n), where c(n) is

the maximum of c(G) over all n-vertex connected graphs. If true, the estimate is best
possible as one can construct a bipartite graph based on the finite projective plane with
the cop number of order at least

√
n. Up until recently, the best known upper bound of

O(n log log n/ logn) was given in [7]. It took 20 years to show that c(n) = O(n/ logn)

proved in [6]. Today we know that the cop number is at most n2−(1+o(1))
√
logn (which is
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still n1−o(1)) for any connected graph on n vertices (the result obtained independently
by Lu, Peng [10] and Scott, Sudakov [14]).
If one looks for counterexamples for Meyniel’s conjecture it is natural to study first

the cop number of random graphs. Let us recall that the binomial random graph
G(n, p) is defined as a random graph with vertex set [n] = {1, 2, . . . , n} in which a pair
of vertices appears as an edge with probability p, independently for each such a pair.
As typical in random graph theory, we shall consider only asymptotic properties of
G(n, p) as n → ∞, where p = p(n) may and usually does depend on n. Consequently,
all inequalities are assumed to hold only for n large enough. We say that an event in a
probability space holds asymptotically almost surely (a.a.s.) if its probability tends to
one as n goes to infinity.
Let us first describe briefly some known results on the cop number of G(n, p). Bonato,

Wang, and the second author of this paper started investigating such games in G(n, p)
random graphs and their generalizations used to model complex networks with a power-
law degree distribution (see [4, 5]). From their results it follows that if np = nα+o(1),
where 1/2 < α ≤ 1, then a.a.s.

c(G(n, p)) = Θ(log n/p) = n1−α+o(1) (1)

and c(G(n, n−1/2+o(1))) = n1/2+o(1) a.a.s. In fact, for constant p we get much better
concentration, namely, it has been shown that

c(G(n, p)) = (1 + o(1)) log 1
1−p

n.

In order to get a constant cop number that does not grow with the size of the graph,
p = p(n) must tend to one as n goes to infinity (see [12] for more).
On the other hand, Bollobás, Kun, and Leader [3] showed that the cop number of

G(n, p) is always bounded from above by n1/2+o(1) and this bound is achieved at the
other end of the spectrum, that is, for sparse random graphs. More precisely, they
showed that whenever p(n) ≥ 2.1 logn/n, then a.a.s.

1

(np)2
n

1
2

log log(np)−9
log log(np) ≤ c(G(n, p)) ≤ 160000

√
n log n . (2)

Hence, if we ignore a logarithmic factor, G(n, p) cannot be used to construct a coun-
terexample for the Meyniel’s conjecture.
Since if either np = no(1) or np = n1/2+o(1), then a.a.s. c(G(n, p)) = n1/2+o(1), it would

be natural to assume that the cop number of G(n, p) is close to
√
n also for np = nα+o(1),

where 0 < α < 1/2. Note that for this range of p, the result presented in (2) implies
only that

n1/2−2α+o(1) ≤ c(G(n, p)) ≤ n1/2+o(1),

which is not tight and gives no lower bound for 1/4 < α < 1/2. We show that the actual
behaviour of c(G(n, p) is more complicated. Let function f : (0, 1) → R be defined as

f(x) =
log c̄(G(n, nx−1))

log n
,
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where c̄(G(n, p)) denotes the median of the cop number for G(n, p), has a characteristic
zigzag shape (see Figure 1). We are going to show that f has the following form

f(x) =

{

αj, if 1
2j+1

≤ α ≤ 1
2j

for some j ≥ 1;

1− αj, if 1
2j

< α < 1
2j−1

for some j ≥ 1.

Figure 1. The ‘zigzag’ function f .

Our main result is as follows.

Theorem 1.1. Let 0 < α < 1 and d = d(n) = np = nα+o(1).

(i) If 1
2j+1

< α < 1
2j

for some j ≥ 1, then a.a.s.

c(G(n, p)) = Θ(dj) .

(ii) If 1
2j

< α < 1
2j−1

for some j ≥ 1, then a.a.s.

Ω
( n

dj

)

= c(G(n, p)) = O
( n

dj
logn

)

.

Note that in the above result we skip the case when np = n1/k+o(1), for some natural k.
We have done it for technical reasons: our argument for the lower bound for c(G(n, p))
uses Corollary 2.6 from [15] which is stated only for np = nα+o(1), where α 6= 1/k.
Clearly, one can repeat the argument given in [15], which is a very nice but slightly
technical application of the polynomial concentration method inequality by Kim and
Vu. However, in order to make paper easier and more compact we have decided to
apply ready-to-use Vu’s result and concentrate on the ‘linear’ parts of the graph of the
zigzag function. Nonetheless, one can expect that, up to a factor of logO(1) n, our result
extends naturally also to the case np = n1/k+o(1) as well.

2. Proof of the main result

Let us start with the following result on typical properties of G(n, p). Let Ni(v)
denote a set of vertices that are within distance at most i from v.
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Lemma 2.1. Let 0 < ε < 0.1, ε < α < 1 − ε, and d = d(n) = np = nα+o(1). Then

a.a.s. for every vertex v of G(n, p) the following holds.

(i) For every 1 ≤ i ≤ 1/α such that di ≤ ε2n we have

(1− ε)di ≤ |Ni(v)| ≤ (1 + ε)di ,

Furthermore, if k = 1/α ∈ N and dk ≥ ε2n, then

|Nk(v)| ≥ 0.9ε2n .

(ii) For every 1 ≤ i ≤ 1/(2α) and vertices v1, v2, . . . , vk we have
∣

∣

∣

∣

∣

k
⋃

j=1

Ni+1(vj)

∣

∣

∣

∣

∣

≥ 0.5min{k(0.1d)i+1, n}. (3)

(iii) If w ∈ Ni(v) for some i, 2 ≤ i < 1/α, then v and w are joined by fewer than

2/(1− iα) paths of length i.
Furthermore, if ℓ = ⌊1/α⌋+ 1 < 1/α+ 1, then the number of paths of length

ℓ joining v and w are bounded from above by 3
1−(ℓ−1)α

dℓ

n
.

(iv) If i < 1/α, then each edge of G(n, p) is contained in at most εd cycles of length

at most i+ 2.

Proof. The estimates in (i) for the size of neighbourhoods of vertices are well-known
and follow easily from Chernoff’s inequality.
In order to show (ii) let us choose k vertices and generate their (i + 1)th neigh-

bourhoods sequentially, each time disregarding vertices which belong to vertices whose
neighbourhoods have been already found. Then, by Chernoff’s bounds, the probability
that for a vertex v we found fewer than (0.1d)i+1 new vertices in its (i+1)th neighbour-
hood, provided we have used no more than n/2 vertices so far, is smaller than n−4. If
(3) does not hold, then the number of used vertices is smaller than n/2 and at least half
among k vertices must have fewer than (0.1d)i+1 vertices in its (i+1)th neighbourhood.
However, probability of such an event is bounded from above by

n
∑

k=1

(

n

k

)

2k(n−4)k/2 ≤
n

∑

k=1

(4n−2)k/2 = O(n−1).

The first part of (iii) can be easily verified using the first moment method; the second
part of (iii) is a consequence of (i) (for i = ⌊1/α⌋), the first part of (iii) and Chernoff’s
bounds.
In order to verify (iv) it is enough to check that for any given pair of vertices r1, r2,

and j such that 2 ≤ j ≤ i+ 1, the probability that G(n, p) contains more than εd/(2i)
(r1, r2)-paths of length j is o(n−2). Denote the number of such paths by Xr1,r2

j (n, p).
Then, for the expectation of Xr1,r2

j (n, p) we get

EXr1,r2
j (n, p) =

(

n− 2

j − 1

)

(j − 1)!pj < 2
dj

n
≤ 2d

di

n
≤ εd

4i
.

Now, choose p′ > p in such a way that

EXr1,r2
j (n, p′) =

εd

4i
≥ log2(j+1) n .
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Then, by a result of Vu (see [15], Corollary 2.6) it follows that for some constant a > 0,

Pr(Xr1,r2
j (n, p′) > εd/(2i)) ≤ Pr(Xr1,r2

j (n, p′) > 2EXr1,r2
j (n, p′))

≤ exp
(

− a(EXr1,r2
j (n, p′))1/(j+1)

)

≤ exp
(

− a log2 n)
)

= o(n−2) .

Consequently,

Pr
(

Xr1,r2
j (n, p) >

εd

2i

)

≤ Pr
(

Xr1,r2
j (n, p′) >

εd

2i

)

= o(n−2) ,

and the assertion follows. �

The upper bound for c(G(n, p)) follows from the following result.

Lemma 2.2. Let j ≥ 1 and d = d(n) = pn.

(i) Let n1/(2j+1) ≤ d ≤ n1/(2j) and γ = ⌈n log n/d2j+1⌉. Then a.a.s.

c(G(n, p)) = O
(

djγ
)

.

(ii) If n1/(2j+2) ≤ d ≤ n1/(2j+1), then a.a.s.

c(G(n, p)) = O
( n

dj+1
logn

)

.

Proof. Assume first that n1/(2j+1) ≤ d ≤ n1/(2j). We describe an ‘immediate pursuit’
strategy for cops and then prove that a.a.s. it is winning in the game. We place βn =
5000(10d)jγ cops uniformly at random on vertices of G(n, p). Then, the robber selects
his vertex v. Now, we assign to each vertex u in Nj(v) \ Nj−1(v) the unique cop that
occupies a vertex in Nj+1(u). If this can be done, then cops assigned to vertices are
moving into their destinations and after j + 1 steps the robber is surrounded. Finally,
the cops move towards the robber eventually capturing him.
In order to show that the above strategy is a.a.s. winning, we use Hall’s theorem for

matchings in bipartite graphs. Thus, let us fix any vertex v and S ⊆ Nj(v) \ Nj−1(v)
with |S| = k. Let

k0 = max{k : (0.1d)j+1k < n}.
It follows from Lemma 2.1(ii) that if k ≤ k0, then the number of cops that occupy
⋃

u∈S Nj+1(u) is bounded from below by the Bernoulli random variable B(M,β), where
M ≥ 0.1k(0.1d)j+1. The expectation of this random variable is Mβ ≥ 50k logn, so,
using the Chernoff’s bounds, we infer that the probability that there are fewer than k
cops in

⋃

u∈S Nj+1(u) is less than exp(−4k log n). Since

k0
∑

k=1

(|Nj(v)|
k

)

exp(−4k log n) ≤
n

∑

k=1

nk exp(−4k logn) = O(n−2),

with probability 1 − O(n−2) the necessary condition in the statement of the Hall’s
theorem holds for all sets of cardinality at most k0.
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In a similar way, again by Lemma 2.1(ii), if k0 ≤ k ≤ |Nj(v)| ≤ 2dj, then the
Chernoff’s bound implies that the number of cops in

⋃

u∈S Nj+1(u) is at least 1
4
nβ ≥

50dj > |Nj(v)| with probability at least 1− exp(−4dj). Since

|Nj(v)|
∑

k=k0+1

(|Nj(v)|
k

)

exp(−4dj) ≤ 2dj22d
j

exp(−4dj) = O(n−2),

the Hall’s necessary condition holds with probability 1 − O(n−2) provided the robber
starts from vertex v. Since the robber has n vertices available to start from, we have
shown that a.a.s. the robber will be surrounded after his first j moves. It is also easy to
show that a.a.s. there is always a matching between Ni+1(v)\Ni(v) and Ni(v)\Ni−1(v)
saturating each vertex in a smaller set, for all i = 1, 2, . . . , j; that is, a.a.s. the cops can
move toward the robber tightening the loop, and win the game in the next j moves.
Note that if (n logn)1/(2j+1) ≤ d ≤ n1/(2j), then γ = 1; when d is approaching n1/(2j+1)

the constant γ grows, and becomes log n for d = n1/(2j+1). The reason for introducing
an additional factor γ in the proof follows from the fact that in order to use Chernoff’s
bound for small k’s, the expected number of cops in the (j + 1)th neighbourhood of
a vertex from Nj(v) must be Ω(log n). If (n logn)1/(2j+1) ≤ d ≤ n1/(2j), and we place
Θ(dj) cops in the graph, then the expected number of cops in Nj+1(w) is Θ(dj+1dj/n) =
Θ(d2j+1/n) = Ω(log n), but when n1/(2j+1) ≤ d ≤ (n log n)1/(2j+1) the extra factor γ is
needed.
One can mimic the above argument to show that if n1/(2j+2) ≤ d ≤ n1/(2j+1), then

a.a.s. βn = 5000n logn/(0.1d)j+1 cops can win the game. The difference in the estimates
of the cop number follows from the fact that in the immediate pursuit strategy only
cops who are within distance 2j +1 from the robber are ‘active’, that is, they can take
part in the chase. In the previous case all but a small fraction of cops were active. Now
in our team we have

Θ
(

βd2j+1
)

= Θ
(

dj log n
)

active cops only. Thus, as the (j +1)th neighbourhoods of vertices from the jth neigh-
bourhood of v are nearly disjoint, the expected number of cops in the neighbourhood
of w ∈ Nj(v) is log n, as in the previous case. This little adjustment seems to be only
a cosmetic technical difference but it plays an important role and has a big impact on
the main result implying the zigzag shape of the function f(x) we study. �

The lower bound for c(G(n, p)) is given in the two following results.

Lemma 2.3. Let 1
2j+1

< α < 1
2j

for some natural j ≥ 1, c = c(j, α) = 3
1−2jα

and

d = d(n) = np = nα+o(1). Then a.a.s.

c(G(n, p)) ≥
[ d

3cj

]j

.

Proof. Since our result holds a.a.s., without loss of generality, we can assume that the
graph we play on satisfies the properties stated in Lemma 2.1. Let us assume that we

chase the robber using fewer than
[

d
3cj

]j
cops. For vertices x1, . . . , xs let C

x1,...,xs

i (v) de-

note the number of cops in the ith neighbourhood of v in the graphG(n, p)\{x1, . . . , xs};
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in particular, if v /∈ {x1, . . . , xs} then Cx1,...,xs

0 (v) = 0 if and only if a vertex v is not
occupied by a cop. Before the robber’s move, we say that a vertex v occupied by the
robber is safe, if for some neighbour x of v we have Cx

0(v) = 0, and

Cx
2i−1(v),C

x
2i(v) ≤

[ d

3cj

]i

for every i = 1, 2, . . . , j (such a vertex x will be called a deadly neighbour of v). Note
that, since a.a.s. G(n, p) is connected, without loss of generality one can assume that at
the beginning of the game all cops are placed at the same vertex w. Then, the robber
may choose a vertex v which is at a distance 2j+1 from w (see Lemma 2.1(i) for i = 2j)
and so, even if all cops will move to N2j(v), after this move v will remain safe. Hence,
in order to prove the lemma, it is enough to show that if v is safe, the robber can move
to an unoccupied neighbour y so that y will remain safe after the following move of
cops.
We say that for some r ≥ 0 a neighbour y of v is r-dangerous if

(i) Cv,x
r (y) > 0 if r = 0, 1 ;

(ii) Cv,x
r (y) >

[

d
3cj

]i

if either r = 2i or r = 2i+ 1 ,

where x is a deadly neighbour of v. We shall check now that for every r the number
dang(r) of r-dangerous neighbours of v is smaller than d/3j. Since by the assumption
that v is safe we know that Cx

s (v) ≤ d
3cj

for s ∈ {1, 2}, the claim follows for r = 0 and

r = 1. In a similar way, from the fact that for a cop occupying a vertex w at a distance
i from v, it follows that fewer than c neighbours of v are at a distance i − 1 from w.
Thus, for r = 2i, we have

[ d

3cj

]i−1

dang(2i− 1) ≤ c · Cx
2i(v) ≤ c

[ d

3cj

]i

,

and consequently

dang(2i− 1) ≤ d

3j
.

If r = 2i+ 1, then
[ d

3cj

]i

dang(2i) ≤ c · Cx
2i+2(v) ≤ c

[ d

3cj

]i+1

,

and again

dang(2i− 1) ≤ d

3j
.

Thus, at most 2d/3 of neighbours of v are r-dangerous for some r = 0, 1, . . . , 2j − 1.
Now we may use Lemma 2.1(i) and (iv) to infer that there is a neighbour y of v which
is not r-dangerous for all r = 0, 1, . . . , 2j − 1 and x does not belong to the (2j − 1)-
neighbourhood of y in G(n, p) \ {v}. We move the robber to y.
Now it is time for cops to make their move. Because of our choice of the vertex y,

we can assure that the upper bound for Cv
r(y) required for y to be safe will be held for

r = 0, 1, . . . , 2j − 1. Indeed, the best that the cops can do is to decrease the distance
between them and the robber by one, but, even if all cops are able to decrease their
distance to the robber, the condition that is required holds. Note that we cannot control
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the number of cops in N2j−1(y) and N2j(y) but both Cv
2j−1(y) and Cv

2j(y) are, clearly,
bounded from above by the total number of cops. Thus, after their move y is safe and
the assertion follows. �

Lemma 2.4. Let 1
2j

< α < 1
2j−1

for some natural number j ≥ 2, c̄ = c̄(α) = 3
1−(2j−1)α

and d = d(n) = np = nα+o(1). Then a.a.s.

c(G(n, p)) ≥
[ d

3c̄j

]j n

c̄d2j
.

Proof. The proof is very similar to that of Lemma 2.3. The only difference is that the
vertices in the 2jth neighbourhood can (2j−1)-dominate as many as c̄d2j/n neighbours
of the vertex occupied by the robber (see Lemma 2.1(iii)). Thus, one needs to modify
the definition of a safe vertex, and call a vertex v safe if for some neighbour x of v we
have Cx

0(v) = 0, and

Cx
2i−1(v),C

x
2i(v) ≤

[ d

3c̄j

]in1−2jα

c̄
,

for every i = 1, 2, . . . , j. Besides this modification the argument remains basically the
same. �

Proof of Theorem 1.1. Theorem 1.1 is a straightforward consequence of (1), Lemmas 2.2,
2.3, and 2.4. �
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