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Abstract. Only recently have techniques been introduced that apply design
theory to construct graphs with the n-e.c. adjacency property. We supply a
new random construction for generating infinite families of finite regular n-
e.c. graphs derived from certain resolvable Steiner 2-designs. We supply an
extension of our construction to the infinite case, and thereby give a new rep-
resentation of the infinite random graph. We describe a family of deterministic
graphs in infinite affine planes which satisfy the 3-e.c. property.

1. Introduction

Adjacency properties of graphs have received much attention since Erdős and
Rényi [8] first studied them in their pioneering work on random graphs. One
such adjacency property is the n-e.c. property. For a positive integer n, a graph
is n-existentially closed or n-e.c., if for all disjoint sets of vertices A and B with
|A∪B| = n (one of A or B can be empty), there is a vertex z not in A∪B joined
to each vertex of A and no vertex of B. We say that z is correctly joined to A and
B. Hence, for all n-subsets S of vertices, there exist 2n vertices joined to S in all
possible ways. For example, a graph is 2-e.c. if for each pair of distinct vertices u
and v, there are four vertices not equalling u and v joined to them in all possible
ways. See Figure 1 for the unique isomorphism type of 2-e.c. graph with least
possible number of vertices. For completeness, every graph is 0-e.c.

Figure 1. The smallest order 2-e.c. graph.
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Despite the fact that the n-e.c. property is straightforward to define, it is not
obvious from the definition that graphs with the property exist. We say that an
event holds asymptotically almost surely (a.a.s.) if the probability that it holds
tends to 1 as v tends to infinity. As first proved in [8] that a.a.s. G(v, p) (that is,
the random graph with v vertices and fixed edge probability p ∈ (0, 1)) satisfies the
n-e.c. property. Similar adjacency properties were studied by Blass and Harary
[2], and in finite model theory [9, 11] to prove the zero-one law in the first-order
theory of graphs.

Explicit constructions of n-e.c. graphs may be found in [3, 4], where it is proved
that sufficiently large Paley graphs are n-e.c. Only recently have techniques been
introduced that apply design theory to construct n-e.c. graphs. Forbes, Grannell,
and Griggs [10] discovered 2- and 3-e.c. graphs arising as block intersection graphs
of Steiner triple systems, while McKay and Pike [15] found 2-e.c. graphs arising
from balanced incomplete block designs. Cameron and Stark [7] and indepen-
dently Baker et al. [1] used randomized constructions to generate strongly regular
n-e.c. graphs for all positive integers n derived from affine designs and planes,
respectively. For other applications of the probabilistic method in design theory,
see the survey [12].

The goal of the present paper is to give a new general construction of regular
n-e.c. graphs arising from Steiner 2-designs. The methods are randomized and
employ regular graphs arising from resolvable Steiner 2-designs, such as affine
planes and Kirkman triple systems. Our main result is Theorem 1, which shows
that a.a.s. graphs generated from certain resolvable Steiner 2-designs are n-e.c.,
where n tends to infinity as a logarithmic function of the number of points of the
design.

If a graph is n-e.c. for all positive integers n, then the graph is called e.c.
Any two countable e.c. graphs are isomorphic by a back-and-forth argument; the
isomorphism type is named the infinite random or Rado graph, and is written R.
From [8], with probability 1 a countably infinite random graph is isomorphic to R.
The (deterministic) graph R has been actively studied; see [6] for a survey on R.
The methods we present extend to the infinite case, giving a new representation
of the infinite random graph; see Theorem 3. We finish by investigating certain
deterministic graphs in infinite affine planes which satisfy the 3-e.c. property.

All graphs considered are simple, undirected, and finite unless otherwise stated.
For a reference on combinatorial designs, the reader is directed to [18], while [19]
is a graph theory reference. We denote the complement of the graph G by G. All
logarithms are in base e unless otherwise stated.

2. Random graphs from designs

A Steiner 2-design S(2, k, v) is a 2-(v, k, 1) design; that is, a collection of k-
subsets called blocks, of a v-set whose elements are called points, such that each
distinct pair of elements of this v-set is contained in a unique block. A Steiner
2-design S(2, k, v) is resolvable if the blocks of S(2, k, v) can be partitioned into
sets, called parallel classes, so that each point of the design is contained in a
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unique block of each parallel class. Such a partition is called a resolution. A
resolvable design may have more than one resolution and so we refer to a design
together with a resolution as a resolved design. By elementary counting, there are
v−1
k−1

parallel classes, so k−1 divides v−1; in addition, k divides v. For sufficiently
large suitable v and choice of k, resolvable Steiner 2-designs S(2, k, v) always exist,
and there are infinitely many of them; see [16].

For each resolved Steiner 2-design S = S(2, k, v) we may assign each parallel
class a label, or slope. The set of slopes is denoted by LS. Note that slopes are not
points in the design, but rather identify the set of blocks from one parallel class.
Given a point y of S, we define πy : S \ {y} → LS by letting πy(x) be the slope
of the block containing x and y. By the definition of a resolved Steiner 2-design,
the function πy is well-defined. If X is a set of points in S, then let

πy(X) =
⋃
x∈X

{πy(x)}.

An important example of a resolvable Steiner 2-design is an affine plane, which
is a 2-(q2, q, 1) design with q a positive integer. Affine planes are known to exist if
q is a prime power, and are all resolvable. The set of slopes LS corresponds to the
points of the (q+1)-element line at infinity, usually written as `∞, and the function
πy is the projection function to the line at infinity. More generally, an affine space
of dimension m is a 2-(qm, q, 1) design. We can identify the set of all the slope
vectors with the points of a fixed hyperplane of codimension 1. Another example
of a resolvable Steiner 2-design is a Kirkman triple system, which is a resolvable
Steiner triple system (that is, a 2-(v, 3, 1) design). Kirkman triple systems exist
for orders v if and only if v ≡ 3 (mod 6).

A design is acceptable if it is a resolvable Steiner 2-designs S(2, k, v) with k ≤√
v. It is straightforward to see that affine spaces and Kirkman triple systems are

acceptable designs.
Consider an infinite set of acceptable designs, and let S be an acceptable design

with v points. Fix U ⊆ LS. Define GS(U) to have vertices the points of S, and two
vertices p and q are joined if and only if the block containing p and q has slope in
U. We will drop the subscript S if it is clear from context. Observe that the graph
G(U) is regular with degree |U |(k−1). We note that in the case when S is an affine
plane, we obtain strongly regular graphs (although this does not necessarily hold
for other designs). The construction in this case was first introduced by Delsarte
and Goethals, and independently by Turyn; see [17].

For example, consider the unique (up to isomorphism) Kirkman triple system
of order 9:

a b c d
{1, 2, 3} {1, 4, 7} {1, 5, 9} {1, 6, 8}
{4, 5, 6} {2, 5, 8} {2, 6, 7} {2, 4, 9}
{7, 8, 9} {3, 6, 9} {3, 4, 8} {3, 5, 7}.
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Here the columns consist of parallel classes with labels from LS = {a, b, c, d}
as indicated. It is not hard to see that if we choose U = {a, b}, then G(U) is
isomorphic to the minimum order 2-e.c. graph in Figure 1.

We may choose U at random as follows: for a given p ∈ [0, 1] (we allow p = p(v)
to be a function of the number of points), choose m ∈ LS to be in U independently
with probability p. Hence, from an acceptable design S, we may define a prob-
ability space G(v, S, p) which consists of regular graphs with v vertices. Observe

that G is n-e.c. if and only if G is n-e.c., and G(U) = G(LS \ U). Thus, without
loss of generality, we can assume that p ≤ 1/2 since proving that a.a.s. G(v, S, p)
is n-e.c. is equivalent to proving that a.a.s. G(v, S, 1− p) is n-e.c. Our main result
is the following.

Theorem 1. Let S be an acceptable design with v points, and suppose that 0 <
p = p(v) ≤ 1/2. Then a.a.s. G(v, S, p) is n-e.c., for all n = n(v) ≤ 1

2
log1/p v −

5 log1/p log v.

Theorem 1 supplies a new construction of regular n-e.c. graphs. Observe that
|U | is a random variable with expected value p v−1

k−1
. By the Chernoff bounds (see,

for example, Section 2.1 of [14]), a.a.s. a graph G ∈ G(v, S, p) is regular with
degree concentrated around pv, provided pv tends to infinity with v. Before we
prove the theorem, we consider the following lemma.

Lemma 2. Let S be an acceptable design with v points and X a given set of
n = n(v) ≤ log2 v points from S. If v is sufficiently large, then there exists a set
of points from S, written PX , disjoint from X with the following properties.

(1) If q ∈ PX , then |πq(X)| = n.
(2) For all distinct q1 and q2 in PX , πq1(X) ∩ πq2(X) = ∅.
(3) |PX | ≥ 1

2

√
v/ log2

2 v.

Lemma 2 supplies a pool of points PX which satisfy certain desirable indepen-
dence properties. Our approach to the proof of Theorem 1 will be to prove that
the probability that no vertex in PX is correctly joined to X is sufficiently small
as v becomes large.

Proof of Lemma 2. We inductively construct PX satisfying items (1) and (2). De-
fine PX,1 by choosing any point q1 /∈ X that is not in a block containing two points
of X. For large v this eliminates at most

n +

(
n

2

)
k ≤ kn2

2
≤

√
v log2

2 v

2
< v

points, and so we may find such a q1.
Let s = d1

2

√
v/ log2

2 ve. For a fixed 1 ≤ i < s suppose that PX,i has been
constructed so that PX,1 ⊂ PX,2 ⊂ · · · ⊂ PX,i−1 ⊂ PX,i, and PX,i satisfies (1) and
(2) with |PX,i| = i. We would like to choose qi+1 /∈ (X ∪ PX,i) to be a point that
is

i) not in a block containing two points of X, and
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ii) not in a block containing a point a of X which is in a parallel class with
slope in πb(PX,i) for any b ∈ X.

For i < s and v large enough, conditions i) and ii) eliminate at most

n +

(
n

2

)
k + nik + n(n− 1)ik ≤ n2sk < v

points. Hence, we may find a suitable qi+1 satisfying items (1) and (2). Add qi+1

to PX,i to form PX,i+1. Define PX = PX,s, so |PX | = s and (3) follows. ¤

Proof of Theorem 1. Fix finite, disjoint sets of vertices A and B in S, |A| = a,
|B| = b, such that a + b = n, and let X = A ∪ B. If v is sufficiently large, then
there is a set PX of vertices, disjoint from X, with cardinality s ≥ 1

2

√
v/ log2

2 v
and satisfying the properties described in Lemma 2. We estimate the probability
that none of the vertices of PX is correctly joined to A and B.

By item (1) of the lemma, for x and y distinct points of X, any z in PX has the
property that the blocks containing {x, z} and {y, z} have distinct slopes. Note
also that z and x are joined if and only if πz(x) ∈ U, where U was randomly
sampled with probability p from LS. The probability that a given z in PX is not
joined correctly to A and B is therefore

1− pa(1− p)b.

By item (2) of the lemma, two points of PX induce disjoint sets πq(X). In partic-
ular, the events under consideration are independent. Hence, the probability that
no z in PX is correctly joined to A and B is at most

(2.1)
(
1− pa(1− p)b

)s
.

As there are
(

v
b

)(
v−b
n−b

)
many choices for A and B with |B| = b, by (2.1) the

probability that G is not n-e.c. is therefore at most

pn =
n∑

b=0

(
v

b

)(
v − b

n− b

) (
1− pn−b(1− p)b

)s

≤ (1 + o(1))vn

n∑

b=0

1

b!(n− b)!
exp

(
−pn

(
1− p

p

)b

s

)

≤ (1 + o(1))
vn

n!

n∑

b=0

(
n

b

)
exp (−pns)

= (1 + o(1))
(2v)n

n!
exp (−pns) .
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Now, using the Stirling’s formula n! = (1 + o(1))
√

2πn(n/e)n we obtain that

pn ≤ (1 + o(1))

(
2ev

n

)n

exp (−pns)

= (1 + o(1)) exp (n(log v + log(2e)− log n)− pns)

= exp
(
O(log2 v)− p−

1
2

logp v+5 logp log vΩ(
√

v/ log2 v)
)

= exp
(
O(log2 v)− Ω(log3 v)

)

= o(1),

and the assertion follows. ¤
Note that Theorem 1 and Lemma 2 hold for any acceptable design S. However,

if S contains blocks of constant order (as in the case for a Kirkman triple system),
then the cardinality of PX in Lemma 2 is much larger; namely, 1

2k
v/ log2

2 v. This
also implies that for such designs, the value of n in Theorem 1 can be increased to
log1/p v − 5 log1/p log v. Therefore, for p = 1/2 the result is, in some sense, tight,
since no graph with v vertices can be (log2 v)-e.c. (see below for bounds on the
minimum order of an n-e.c. graph).

We note that Theorem 1 gives examples of sparse regular graphs of order v
which are n-e.c. with n tending to infinity in v. For example, if

p = v−
1

log log v = exp

(
− log v

log log v

)
= o(1),

then the degree of G(v, S, p) concentrates on v1− 1
log log v = o(v) and

n = (1 + o(1))
1

2
log log v.

For a positive integer n, define mec(n) to be the minimum order of an n-e.c.
graph. Then mec(1) = 4 and mec(2) = 9, but no other values of this function
are known. For example, 20 ≤ mec(3) ≤ 28; see [5]. Results in [13] obtained
using a computer search demonstrate that mec(3) ≥ 24. Using the fact that in an
n-e.c. graph with n > 1, the neighbour and non-neighbour sets of each vertex are
(n−1)-e.c., we have that mec(n) ≥ 2mec(n−1)+1. As mec(3) ≥ 24, the assertion
holds and by a simple (and so omitted recursion), we derive for n ≥ 3 that

mec(n) ≥ (25/8)2n − 1.

On the other hand, from our construction (with p = 1/2) it follows that mec(n) ≤
O(n52n) (in fact, using the random graph G(v, 1/2) one has that mec(n) =
O(n22n)). It follows that

lim
n→∞

mec(n)1/n = 2.

An open problem is to determine whether

lim
n→∞

mec(n)

2n

exists and, if so to find its value.
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3. Representations of the infinite random graph

The probability space G(N, p) is defined analogously as G(v, p), but with ver-
tices now the nonnegative integers. Erdős and Rényi [8] proved that with prob-
ability 1 a graph in G(N, p), where p ∈ (0, 1), is isomorphic to a unique graph,
called the infinite random graph or Rado graph. The graph R is deterministic and
has a rich structure; it is the unique isomorphism type of countable graphs that
is n-e.c. for all n > 0. The graph R has many well-known representations ; that is,
constructions resulting in the isomorphism type of R. These representations are
diverse, using techniques from number theory, set theory, and probability; see [6]
for a survey of results on R. For completeness, we describe one such representa-
tion that uses a few tools from number theory. Let the vertices of G be the set of
primes P1 congruent to 1 (mod 4). The set P1 is infinite by Dirichlet’s theorem on
primes in arithmetic progressions. Two distinct primes p and q in P1 are joined
if p is a square (mod q) or q is a square (mod p). The graph G is undirected by
the law of quadratic reciprocity, and the n-e.c. properties follow by the Chinese
Remainder theorem and Dirichlet’s theorem.

In this section, we supply a new randomized representation of R using plane
affine geometry. The ideas are based on those of the previous section. We work in
any fixed countable affine plane A. In this case, the set of slopes is the point set
of the line at infinity, for which we will adopt the standard notation `∞. Hence,
πp : A →`∞ is the projection from p to `∞ defined in the usual way. For U ⊆ `∞,
define G(U) to have vertices the points of A, and two vertices p and q are joined
if and only if the line pq has slope in U. As in the finite case, we may choose U
at random: for fixed p ∈ (0, 1), choose m ∈ `∞ to be in U independently with
probability p; with the remaining probability, m is in the complement of U. We
therefore have defined a probability space which we denote G(A, p) consisting of
graphs G(U) with vertices the points of A.

Theorem 3. Fix p ∈ (0, 1). With probability 1, G(A, p) is n-e.c. for all n > 0,
and so G(U) ∼= R.

The following lemma has a proof similar to the proof of Lemma 2, and so we
omit the proof.

Lemma 4. For n a positive integer and X a set of n points in A, there exists an
infinite set of points PX in A distinct from X with the following properties.

(1) If q ∈ PX , then |πq(X)| = n.
(2) For all distinct q1 and q2 in PX , πq1(X) ∩ πq2(X) = ∅.

Proof of Theorem 3. Fix finite, disjoint sets of vertices A and B in A. Let X =
A ∪ B, and say |X| = n. We prove that with probability 1, there is a vertex z
joined to all of A and none of B.

Let PX be a set of points distinct from X with the properties of Lemma 4.
Suppose that |A| = a and |B| = b. The probability that a given z in PX is not
joined correctly to A and B is

1− pa(1− p)b.
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The probability that no z in A is correctly joined to A and B is zero since

lim
m→∞

(1− pa(1− p)b)m = 0.

The assertion therefore holds for fixed A and B. As a countable union of measure
0 sets is measure 0, the result follows. ¤

We emphasize that the above proof also works with minor changes for any
countably infinite affine space (or more generally for any countably infinite re-
solved Steiner 2-design). An interpretation of Theorem 3 is that a randomly
chosen set of slopes U gives rise to R with high probability. However, the problem
of finding explicit slope sets U that give rise to n-e.c. graphs is open for n > 3.

We now give an explicit example of an infinite 3-e.c. graph with vertices in Q2

and whose slope set is the union of two intervals in the set of extended rational
numbers Q∪{∞}. We will abuse notation and refer to an interval in the extended
rationals as (a, b). It is easy to check that a choice of U as a single interval gives
rise to 2-e.c. but not to 3-e.c. graphs. (For example, if U = (0, 1), then there is
no vertex z in G(U) so that z is joined to (1, 0) but z is not joined nor equal to
either (0, 0) or (2, 0).) Suppose that U = (m,n)∪ (r, s), where m < n < r < s are
rational numbers (note that we use the notation U to denote a slope set U which
is the union of finite open intervals of rationals). This choice of slopes gives rise
to an infinite graph in the plane where adjacency is determined by what may be
visualized as four separate sectors emanating from each point. See Figure 2.

1 2 3 4

1

2

3

4

0

5

5

Figure 2. Neighbours in G((1, 2) ∪ (3, 4)) of (0, 0) in the first quadrant.

Theorem 5. The graphs G(U) are 3-e.c.

Proof. Fix U = (m,n) ∪ (r, s), where m < n < r < s are rational numbers. To
show that G(U) is 3-e.c., let u, v, and w be fixed distinct points in the plane.
We look for a vertex z correctly joined to u, v, and w in all of the eight cases.
To simplify our discussion, we use the notation (ijk) to refer to the eight cases,
where i, j, k are 0 or 1. For example, z 6∈ {u, v, w} satisfies (101) if and only if it is
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joined to u and w, but not joined to v. We refer to (ijk) as an adjacency problem
(or simply a problem) and a vertex z satisfying it as a solution to the problem.

There are two cases depending on whether the three points u, v, and w are
collinear.

Case 1: The points u, v, and w are collinear.

Since translations in the plane preserve slopes, and rotations preserve paral-
lelism and incidence, without loss of generality, suppose that u = (0, 0), v = (0, b)
and w = (0, c), where 0 < b < c.

We give solutions to the eight problems (ijk) in the table below. After rotation,
the set of slopes determining adjacency may include ∞; however, since none of
the solutions given lies on a line with slope m, n, r or s (that is, a boundary line
of a sector), we may just consider the complementary problem to find a solution.

Problem Solution
(000) (0, y), where y 6= 0, b, c
(001) (1, y), where max(r + c, s + b) < y < s + c

(010) ( d
s−m

, d(r+s)
2(s−m)

+ b), where 0 < d < min(b, c− b)

(100) ( b
2(n−m)

, b(n+m)
4(n−m)

)

(011) (2c−b
s−r

, (2c−b)s
s−r

+ b
2
)

(101) (d, dn + (c−b)(r−n)
r−m

+ b),

where max( c−b
r−m

, (c−b)(r−n)
(r−m)(s−n)

+ b
s−n

) < d < c−b
r−m

+ b
r−n

(110) ( b+c
n−m

, (b+c)(m+n)
2(n−m)

)

(111) ( 3c
s−r

, 3c(r+s)
2(s−r)

+ c)

Case 2: The points u, v, and w are non-collinear.

As in Case 1, we may use translations and rotations so that, without loss of
generality, u = (0, 0), v = (a, b) and w = (0, c), where 0 < a and 0 < b < c. In
addition, since the solutions we provide do not lie on the boundaries of sectors,
we need only consider the case where U = (m,n) ∪ (r, s), which means that the
vertical lines are not in U .

Problem Solution
(000) at least one of

(0, b− a(n+r)
2

), (0, b− a(3n+r)
4

), (0, b− a(n+3r)
4

)
(100) (a, d), where am < d < min(an, am + c), d 6= b
(010) at least one of

(0, b− a(m+n)
2

), (0, b− a(3m+n)
4

), (0, b− a(n+3n)
4

)
(001) (a, d), where max(ar + c, as) < d < as + c, d 6= b

For the remaining problems, the relative sizes of the parameters n, b/a and b−c
a

are important. Hence, for each problem we consider various conditions on these
three parameters.
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Problem Solution Conditions
(111) ( c+an

n−m , (c+an)(m+n)
2(n−m) + c+b−an

2 ) m ≥ b/a

( 2c
n−m , c(3n+m)

2(n−m) ) b−c
a < m < n ≤ b/a

( c+an
n−m , 2n(c+am)

2(n−m) + b
2) b−c

a < m < b/a < n

(2a + b−am
n−m , (2a + b−am

n−m )(m+n
2 ) + b−am

2 ) b−c
a ≥ m

(101) (a, am+an+c
2 ) n−m > c/a

(a, ar+as+c
2 ) s− r > c/a

(a, d), where d/a is any point with r − n < c/a and s−m > c/a

r < d
a < s and m < d−c

a < n

( c−b+sa
s−r , (c−b+sa)s

s−r − sa−b
2 ) s− r ≤ c/a and b/a < s

( b−am
n−m , (b−am)m

n−m + c+b−am
2 ) s ≤ b/a and r − n ≥ c/a

s ≤ b/a and s−m ≤ c/a plus:
( c

r−m , y), where max( cr
r−m , cn

r−m + b− an) < y < b− an < c and s− r ≥ n−m,

min( cn
r−m + c, cr

r−m + b− ar),

( c
s−n , y), where max( cr

s−n , cn
s−n + b− an) < y < b− an < c and s− r < n−m,

min( cs
s−n , cr

s−n + b− ar),

( c
r−m , y), where cr

r−m < y < c ≤ b− an

min( cs
r−m , cn

r−m + c, cm
r−m + b− am)

(011) ( ac
2ma+c−b ,

c(b−c)
2ma+c−b + c) m < b−c

a < n or
r < b−c

a < s

( b−ar
s−r , ( b−ar

s−r )s + b) s ≤ b−c
a

( c+b−am
t , n(c+b−am)

t + c
2), n < b−c

a ≤ r
where t = min(r − n, n−m)
(2c

t , 2cn
t + b−an

2 ), where t = min(r − n, n−m) b−c
a ≤ m < n < b

a

( −c
n−m , −cm

n−m + b−am
2 ) b−c

a ≤ m < b
a ≤ n

( 2c
3m−n , 4cm

3m−n) n = b−c
a

(110) (−c
s , −cb

as ) m < b/a < n or
r < b/a < s

( −c
s−r , −cs

s−r + b−as+c
2 ) b−c

a < s ≤ b/a

(a(2c−b+as)
ar+as−2b , a(2c−b+as)(r+s)

2(ar+as−2b) + b−as
2 ) n < b/a < r and

ca(s− r) > (ar − b)(as− b)
( c−b+as

s−r , (c−b+as)(s+r)
2(s−r) + b−as

2 ) n ≤ b/a < r and
ca(s− r) ≤ (ar − b)(as− b)

(−2c
r+s ,−c) r = b/a

( −2c
4s−m−n , −c(m+n)

4s−m−n ) n = b/a

( c+an−b
n−m , (c+an−b)(n+m)

2(n−m) − an−b
2 ) b/a ≤ m

( b−an
s−n , r(b−an)

s−n − c(r−n)
s−n + c) s ≤ b−c

a and b−an
s−n ≥ b−am

r−m

( b−am
r−m , r(b−am)

r−m − c(r−n)(b−am)
(b−an)(r−m) + c) s ≤ b−c

a and b−an
s−n < b−am

r−m

¤
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Our final result shows that by using unions of intervals as the slope set we never
obtain 4-e.c. graphs.

Theorem 6. For all n ≥ 2, there is no slope set U consisting of n disjoint open
intervals (r, s), with r and s rational numbers, so that the graph G(U) is 4-e.c.

Proof. Consider the rationals

r1 < s1 < r2 < s2 < · · · < rn < sn.

For each 1 ≤ i ≤ n, let Ii denote the interval (ri, si), and set

U =
n⋃

i=1

Ii.

We will show that there is a non-zero rational number t (to be chosen later in the
proof) so that there is no solution to the 4-e.c. problem (1011) for the vertices
(−1, 0), (0, 0), (1, 0), and (0, t).

Suppose that (a, b) is a solution to (1011) for these vertices. No point of the
y-axis is joined to (0, t), so a 6= 0. Any point of the x-axis is either joined to all
three of (−1, 0), (0, 0), (1, 0) or joined to none of them, so b 6= 0 also. No point
(−1, b) is joined to (−1, 0) and no point (1, b) is joined to (1, 0), so a 6= −1, 1.

The slopes of the lines joining (a, b) to (−1, 0), (0, 0), (1, 0) are b
a+1

, b
a
, b

a−1
,

respectively. Since b
a

/∈ U is always between b
a+1

∈ U and b
a−1

∈ U , the slopes b
a+1

and b
a−1

must belong to distinct intervals, say Ik = (rk, sk) and Im = (rm, sm),
respectively.

For 1 ≤ i ≤ n let L(p, Ii) denote the set of lines through a point p with slope
in the interval Ii, and define

Ri,j = {`i ∩ `j : `i ∈ L((−1, 0), Ii), `j ∈ L((1, 0), Ij)}.
Note that any point p in

Ri,i = {`1 ∩ `2 : `1 ∈ L((−1, 0), Ii), `2 ∈ L((1, 0), Ii)}
is joined to both (−1, 0) and (1, 0); however, p is also joined to (0, 0) and so is
not a solution to (1011). Therefore, each solution to (1011) must lie in one of the
n2 − n regions Ri,j, where i 6= j. Since the intervals Ii and Ij are disjoint, each
region Ri,j is bounded by the four lines

L((−1, 0), {ri}),L((−1, 0), {si}),L((1, 0), {rj}), and L((1, 0), {sj}).
Further, Ri,j is either the interior of a bounded convex quadrilateral (when 0 /∈
Ii ∪ Ij) or the interior of a bow-tie-shaped region (when 0 ∈ (Ii ∪ Ij)).

For each bounded region Ri,j with i 6= j, let ti,j ∈ Q be an upper bound for the
set of rationals

{y − r1x, y − snx : (x, y) ∈ Ri,j},
and choose t > ti,j for all i and j so that t > 0.

From above, (a, b) is a solution to (1011) and (a, b) ∈ Rk,m. The line joining
(0, t) and (a, b) has slope b−t

a
. If a > 0, then t > b − r1a which implies b−t

a
<

r1; and if a < 0, then t > b − sna which implies b−t
a

> sn. Hence, we derive
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the contradiction that b−t
a

/∈ U and (a, b) cannot be a solution to the problem
(1011). ¤
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ham, J. Nešetřil), Springer Verlag, New York (1997) 333-351.

[7] P.J. Cameron, D. Stark, A prolific construction of strongly regular graphs with the n-e.c.
property, Electronic Journal of Combinatorics 9 (2002) no. 1, Research Paper 31, 12 pp.
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