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Abstract. The web may be viewed as a graph each of whose vertices corre-
sponds to a static HTML web page, and each of whose edges corresponds to a
hyperlink from one web page to another. Recently there has been considerable
interest in using random graphs to model complex real-world networks to gain
an insight into their properties. In this paper we propose an extended version of
a new random model of the web graph in which the degree of a vertex depends
on its age. We use the differential equation method to obtain basic results on
the probability of edges being present. From this we are able to characterize
the degree sequence of the model and study its behaviour near the connectivity
threshold.

1. Introduction

Recently many new random graphs models have been introduced and analyzed
by certain common features observed in many large-scale real-world networks such
as the ‘web graph’ (see, for instance a general survey [2]). The web may be viewed
as a directed graph whose nodes correspond to static pages on the web, and whose
arcs correspond to links between these pages.

One of the most characteristic features of this graph is its degree sequence.
Broder et al. [3] noticed that the distribution of degrees follows a power law: the
fraction of vertices with degree d is proportional to d−γ, where γ is a constant
independent of the size of the network (more precisely, γ ∼ 2.1 for in-degrees,
γ ∼ 2.7 for out-degrees). These observations suggest that the web is not well
modeled by traditional random graph models such as Gn,p (see, for instance [5]).

ÃLuczak and the first author introduced in [6] another random graph model
of the undirected ‘web graphs’, the protean graph Pn(d, η), which is controlled
by two additional parameters (d ∈ N and 0 < η < 1). The major feature of
this model is that older vertices are preferred when joining a new vertex into
the graph. In [6] it is proved that the degrees of the Pn(d, η) are distributed
according to the power law. The first author showed also in [8] that the protean
graph Pn(d, η) asymptotically almost surely (a.a.s.) has one giant component,
containing a positive fraction of all vertices, whose diameter is equal to Θ(log n).

Note that, unlike most of theoretical models of the internet graph, the number
of vertices of the protean graph is large but fixed and does not grow during the
protean process. One may view this as a weakness of the approach since the
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internet graph is, at least at this moment, rapidly expanding. In the present paper,
the authors introduce another random graph model, a growing protean graph
Pt(p, d, η), which is an extended version of standard protean graph controlled by
an additional parameter p, 0.5 < p ≤ 1. This extension causes the number of
vertices of Pt(p, d, η) to grow during the process.

In Section 4, we use the differential equation method to obtain a result similar to
one in [6] for probability that a set of edges is present or absent in the graph, and
then we use this result to derive degree distribution and connectivity properties
of the growing protean graph, similar to those in [6] (see Section 5).

2. Definitions

A protean process, defined below, is a sequence {Gt}∞t=0 = {(Vt, Et)}∞t=0 of
undirected graphs, where t denotes time. Our model has three fixed parame-
ters: 0.5 < p ≤ 1, d ∈ N and 0 < η < 1. Let G0 = (V0, E0) = ({v1}, ∅) be a fixed
initial graph with a single vertex without edges. Let Nt be a random variable
denoting the number of vertices minus 1 at time t, i.e. Nt = |Vt| − 1. For t > 0
we form Gt from Gt−1 according to the following rules:

• With probability p, add a new vertex v = vNt−1+1 together with d edges
from v to existing vertices chosen randomly with weighted probabilities.
The edges are added in d substeps. In each substep, one edge is added, and
the vertex to join to is chosen as vi with probability equal to i−η/

∑Nt−1+1
j=1 j−η.

• Otherwise, which occurs with probability 1 − p, if Nt−1 = 0 (Gt−1 has a
single vertex only) do nothing, whilst if Nt−1 > 0, choose a random vertex
vi, i ∈ [Nt−1 + 1] = {1, 2, . . . , Nt−1 + 1}, delete vi together with all edges
incident to it. Finally, relabel the remaining vertices preserving their order.
Thus vj+1 becomes vj for i ≤ j ≤ Nt−1.

Pt(p, d, η) denotes the protean graph Gt.
Our model allows loops and multiple edges; there seems no reason to exclude

them. However, there will not in general be very many of these, so excluding them
can be shown not to significantly affect our conclusions.

There is also some flexibility in the starting graph. We could alternatively start
with any arbitrary graph G0, provided its vertices are assigned distinct “ages”.
Since all our results are asymptotic, it is easy to see that the same results will
follow; the influence of the initial graph diminishes over time. In particular, our
starting point in some proofs, such as the first result in the following section, is
the point at which the graph has grown suitably large but is otherwise arbitrary.

Note that during the process, a vertex vj “becomes” vj−1. Since we want to
track such changes for a particular vertex, we say that vj has label j and regard
the event of “becoming” vj−1 as a change of label only. So, when this occurs, vj

in Gt−1 is the same vertex as vj−1 in Gt.
We say that an event holds with extreme probability (wep), if it holds with

probability at least 1 − exp(−Θ(log2 t)) as t → ∞. More generally, an event
holds weps if it holds with probability at least 1− exp(−Θ(log2 s)) as s →∞. To
combine this notion with other asymptotic notation such as O() and o(), we follow
the conventions in [10].
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3. The growing protean process

We first show that the number of vertices of Gt is concentrated.

Lemma 3.1. Let p ∈ (0.5, 1], d ∈ N, and η ∈ (0, 1). Then wep

Nt = N0 + (2p− 1)t + O
(√

t log t
)

.

Proof. Let {Zi} be a sequence of t independent random variables each of which is
equal to 1 with probability p and −1 with probability 1− p. Then

Nt = N0 +
t∑

i=1

Zi + f
(
N0, {Zi}

)
,

where f = f(N0, {Zi}) is a deterministic function arising from the fact that a
vertex is not deleted if Ni is about to drop to 0. Since f is nonnegative, the random
variable Nt is stochastically bounded from below by N0 +

∑t
i=1 Zi. The lower tail

of this variable has the sharp concentration claimed, by Chernoff’s inequality (see,
for instance Corollary 2.3 in [5]). Thus, for every ε = Θ

(
log t/

√
t
)
,

P
(
Nt < N0 + (1− ε)(2p− 1)t

)

≤ P
( t∑

i=1

Zi < (1− ε)E
t∑

i=1

Zi

)

≤ 2 exp
(
− ε2

3
E

t∑
i=1

Zi

)
= exp

(
−Θ(log2 t)

)
.

For the upper tail, we note first (again using Chernoff) that wep the random

variable Z(k) =
∑k

i=1 Zi is positive for every k in the range t1/4 ≤ k ≤ t. Hence
wep f < t1/4. The upper tail bound again follows from Chernoff’s inequality. For
every ε = Θ

(
log t/

√
t
)

P
(
Nt > N0 + (1 + ε)(2p− 1)t

)

= P
( t∑

i=1

Zi > (1 + ε) E
t∑

i=1

Zi − f
)

≤ P
( t∑

i=1

Zi > (1 +
ε

2
) E

t∑
i=1

Zi

)

≤ 2 exp
(
− ε2

12
E

t∑
i=1

Zi

)
= exp

(
−Θ(log2 t)

)
.

¤
In the rest of this section, we will consider the growing protean process {Gt}tf

t=t0

from a time t0, conditional upon Gt0 = G for some fixed graph G, and let n denote
the number of vertices of G minus 1, that is, n = Nt0 = |Vt0| − 1. For this section,
we will consider the process only up to tf = t0 + bcn2p/ log3 nc, where c > 0 is
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an arbitrary constant (included to make a nicer statement of Lemma 4.3). We
desire effectively to assume that the vertex v = vn+1 ∈ Gt0 survives until time
tf . Conditioning on this event, which we call S(t0, tf ), is equivalent to considering
an altered process in which, for each step that deletes a vertex, the selection is
made from the vertices other than v. Until further notice, we consider this altered
process. We define the random variable Jt to be the number of vertices older than
v in Gt. We need to show that Jt is sharply concentrated in the context of the
conditional space under consideration. It is easy for completeness to treat Nt at
the same time, even though Lemma 3.1 shows concentration of Nt in general.

Note that the vector (Nt, Jt) is Markovian, that is, its distribution at time t+1
is determined by its value at time t and is independent of the earlier history. Also
it is easy to see that for every t0 ≤ t ≤ tf , provided Nt > 0

E(Nt+1 −Nt|Gt) = 2p− 1 ,

E(Jt+1 − Jt|Gt) = −(1− p)
Jt

Nt

.

It provides some insight if we define real functions z(x) and y(x) to model the
behaviour of the scaled functions 1

n
Nxn and 1

n
Jxn respectively. If we presume

that the changes in the functions correspond to the expected changes of random
variables, we obtain a system of differential equations

z′(x) = 2p− 1 ,
y′(x) = −(1− p)y

z
,

with the initial conditions z(t0/n) = y(t0/n) = 1. The general solution of this
system can be put in the form

(2p− 1) log y = −(1− p) log z + C1 ,
z = (2p− 1)x + C2 .

(1)

Defining

H(Nt, Jt) = (2p− 1) log
Jt

n
+ (1− p) log

Nt

n
, (2)

in view of (1), the general solution of the scaled differential equation corresponds
to the system of equations

H(Nt, Jt) = C1 ,
Nt − (2p− 1)t = C2 .

This is a solution (taking Nt = N(t) etc.) of the unscaled differential equations

N ′(t) = 2p− 1
J ′(t) = −(1− p) J

N
,

(3)

where t is regarded as a real variable. Of course C1 and C2 are determined by
the initial conditions. It should be emphasised that these differential equations
are only suggested (at this stage). However, we will be able to show that Jt is
well concentrated around the solution value y(t/n)n. For this we use the same
supermartingale method as in Pittel et al. [7]. It is encapsulated by the following
result [9, Corollary 4.1].
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Lemma 3.2. Let G0, G1, . . . , Gt be a random process and Xi a random variable
determined by G0, G1, . . . , Gi, 0 ≤ i ≤ t. Suppose that for some real b and con-
stants ci, E(Xi−Xi−1|G0, G1, . . . , Gi−1) < b and |Xi−Xi−1−b| ≤ ci for 1 ≤ i ≤ t.
Then for all α > 0,

P
(∃i (0 ≤ i ≤ t) : Xi −X0 ≥ ib + α

) ≤ exp
(
− α2

2
∑

c2
j

)
.

We now come to the main result of this section. Let It0,i,t denote the label of
the vertex in Gt that was vi in the graph Gt0 , provided that vertex is still present
in Gt. Note we can express Jt in terms of this notation, that is Jt = It0,Nt0+1,t− 1.
When i and t0 are understood, we abbreviate this to It.

Theorem 3.3. Let p ∈ (0.5, 1], d ∈ N, η ∈ (0, 1), and for arbitrary t0 let Gt, Nt,
Jt be defined as above, and let i ≤ Nt0. Condition on the events that Gt0 = G for
some fixed graph G and that S(t0, tf ) holds, and put n = Nt0 = |V (G)| − 1. Then
wepn, for every t in the range t0 ≤ t ≤ tf we have

Nt = n + (2p− 1)(t− t0) + O(np log n), (4)

Jt = n
(Nt

n

) p−1
2p−1

(1 + O(log−1/2 n)) , (5)

and, conditional upon the vertex vi ∈ Gt0 surviving until time tf ,

It =
iJt

n
(1 + O(log−1/2 n)) or

iJt

n
< log3 n . (6)

Proof. In the first main part of the proof we show (5), and with almost no effort
we obtain (4) at the same time. Alternatively, one can at the outset obtain (4) as
follows. Note that for every t0 ≤ t ≤ t0 +np equation (4) holds (deterministically).
We observe that Lemma 3.1 applies for the growing protean process starting from
an arbitrary initial graph with N0 + 1 vertices. This implies immediately that
wept−t0

Nt = n + (2p− 1)(t− t0) + O
(√

t− t0 log(t− t0)
)

holds for every t0 ≤ t ≤ tf . So, wepn for every t0 + np < t ≤ tf (4) holds.
Let wt = (Nt, Jt), and consider the sequence of random variables

{Xt}tf
t=t0 = {H(wt)}tf

t=t0 ,

where the function H is defined in (2), and the stopping time

T = min{t ≥ t0 : Jt < np/2 ∨Nt < n/2 ∨ t = tf} .

(A stopping time is any random variable T with values in {0, 1, . . . } ∪ {∞} such
that it is determined whether T = t̂ for any time t̂ from knowledge of the process
up to and including time t̂.) Note that the second-order partial derivatives of H
with respect to Nt and Jt are O(1/N2

t + 1/J2
t ) = O(1/J2

t ) = O(n−2p), provided
T > t. Therefore, with i ∧ T denoting min{i, T}, we have

H(w(t+1)∧T )−H(wt∧T )

= (w(t+1)∧T −wt∧T ) · grad H(wt∧T ) + O(n−2p) . (7)
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Recall that H(w) is constant along every trajectory w of the unscaled differential
equations (3). So, taking the expectation of (7) conditional on Gt∧T , we obtain

E(H(w(t+1)∧T )−H(wt∧T )|Gt∧T ) = O(n−2p) .

Also from (7), noting that

grad H(wt) = (O(1/Nt), O(1/Jt)) ,

and from the fact that Nt and Jt change by at most 1 per step of the process, we
also have

|H(w(t+1)∧T )−H(wt∧T )|
= O(1/Nt∧T ) + O(1/Jt∧T ) + O(n−2p) = O(n−p) .

Now we can apply Lemma 3.2 to the sequence {H(wt∧T )}tf
t=t0 , and symmetrically

to {−H(wt∧T )}tf
t=t0 , with α = log−1/2 n, b = O(n−2p) and cj = O(n−p), to show

that wepn

|H(wt∧T )−H(wt0)| = O(log−1/2 n).

As H(wt0) = 0, this implies from the definition (2) of the function H, that wepn

equation (5) holds for every t0 ≤ t ≤ T . By the same type of argument, but much
simpler, we immediately obtain (4) wepn for t up to T .

To complete the first part of the proof we need to show that wepn, T = tf . The
events asserted by (4) and (5) hold with this probability up until time T , as shown
above, and the conjunction of these events implies that Jt > np/2 and Nt > n/2
for n sufficiently large, t0 ≤ t ≤ T . It follows that T = tf wepn. Together with
the conclusion above, this completes the proof of the claim on the distribution of
Nt and Jt.

We now turn to the claim on the distribution of the random variable It. It is
easy to observe that, conditional upon vi surviving until time tf , It follows the
hypergeometric distribution with parameters n − 2, k − 1 and Jt − 2, that is,
conditional upon it surviving,

P(It = k | Jt) =

(
i−1
k−1

)(
n−i−1
Jt−k−1

)
(

n−2
Jt−2

) ,

and thus

E(It | Jt) =
(i− 1)(Jt − 2)

n− 2
=

iJt

n
(1 + O(np−1)) .

We can apply a well known bound for the tail of the hypergeometric distribution
(see, for instance, Theorem 2.10 in [5]) to show that the random variable It is
sharply concentrated around its mean. Indeed, working in the conditional space
under consideration (that the vertex survives and that Jt is given) using the fact
that EIt ≥ log3 n, we obtain

P

(
|It − EIt| > EIt

log1/2 n

)
≤ 2 exp

(
− EIt

3 log n

)
= exp

(− Ω(log2 n)
)

,

which is the assertion required for (6). ¤



GROWING PROTEAN GRAPHS 7

It is straightforward to obtain results like those in Theorem 3.3 but with much
smaller error bounds than O(log−1/2 n), at the expense of reducing the value of
tf . One could then apply the lemma to successive intervals of time, tracking the
progress of vertices in the later intervals using (6). However to obtain the main
corollaries in later sections, this is not required. We do however need to convert
the theorem to a form that does not require conditioning on Gt0 , as follows.

Corollary 3.4. Let p ∈ (0.5, 1], d ∈ N, η ∈ (0, 1), for arbitrary t0 define Jt and It

as above, and define tF = t0 + bct2p
0 / log3 t0c, where c > 0 is an arbitrary constant.

Let D(i, t0, t) denote the event that either i > Nt0 + 1 or the vertex of label i in
Gt0 is not still present in Gt. Then wept0, for every t in the range t0 ≤ t ≤ tF we
have

Nt = (2p− 1)t + O(tp0 log t0), (8)

D(Nt0 + 1, t0, t) or Jt = Nt0

( Nt

Nt0

) p−1
2p−1

(1 + O(log−1/2 t0)) , (9)

and for all i > 0

D(i, t0, t) or It =
iJt

Nt0

(1 + O(log−1/2 t0)) or
iJt

Nt0

< log3 t0 . (10)

Proof. Lemma 3.1 shows that Nt0 = Θ(t0) wept0 . Then, conditioning on the event
that Nt0 = Θ(t0), (4) implies that (8) holds wept0 . It then holds wept0 without the
conditioning since Nt0 = Θ(t0) wept0 . We obtain (9) and (10) similarly; replacing
the conditioning in Theorem 3.3 by the disjunction with the event D(i, t0, t) merely
weakens the result. ¤

4. Basic lemma for edge probabilities

In this section we introduce the main tool that allows us easily to compute
the probability of some events in the protean graphs, Lemma 4.3. This shows
a relationship between Pt(p, d, η) and the random graph G(n, q) on the set of
vertices [n] = {1, 2, . . . , n} (where n = Nt + 1), in which a pair of vertices i, j,
1 ≤ i < j ≤ n, are adjacent with probability

q = q(i, j) = d(1− η)n(p−1)/pjη+(1−2p)/pi−η

independently for each such pair. Of course the protean graph Pt(p, d, η) has a
very rich dependence structure, so it only shares some properties with G(n, q).

First we consider a generalization of a well known ‘balls into bins’ model, which
will be useful to prove Lemma 4.3. Suppose that we sequentially put d balls into
m bins by placing each ball into a bin independently and the probability that we
choose a bin k, 1 ≤ k ≤ m, is equal to ρk, where

∑m
i=1 ρk = 1. Let S1, S2 ⊆ [m],

S1 ∩S2 = ∅, |S1| ≤ d, and let p(S1, S2) denote the probability that every bin from
the set S1 has at least one ball, and bins from the set S2 have no balls. In the
following, we use the notation [x]k = x(x− 1) · · · (x− k + 1).

The following fact was used in [6].
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Fact 4.1. Using the notation above, we have

p(S1, S2) ≥
(
1−

∑
j∈S1∪S2

ρj

)d−|S1|
[d]|S1|

∏
i∈S1

ρi ,

and

p(S1, S2) ≤
(
1−

∑
j∈S2

ρj

)d−|S1|
[d]|S1|

∏
i∈S1

ρi .

The proof is simple: in the first inequality p(S1, S2) is estimated by the prob-
ability that each bin from S1 contains precisely one ball; in the second, some
configurations are counted more than once.

Note that we may consider the process as two separate processes. The first
process adds and deletes vertices and decides what the vertex sets are for all
graphs Gt. Let us call this the vertex process. The second process (edge process)
then decides which pairs of vertices are adjacent by using the rules of the growing
protean process at each time t, for the vertex added. We will consider the vertex
process first, and when we have enough facts about it at our fingertips we will
consider the edge process. Note that Corollary 3.4 only really describes the vertex
process.

Before stating the main results of this section, we define n = n(t) to be the
deterministic function of t that approximates the number of vertices in Pt(p, d, η),
that is,

n = n(t) = (2p− 1)t . (11)

Given n, p, d, and η, define

u(j) = j(2p−1)/pn(1−p)/p

and

w(i, j) = (1− η)(j/i)η/u(j) = (1− η)n(p−1)/pjη+(1−2p)/pi−η.

Note that

w(i, j) =
(
1 + O

(
u(j)η−1

))(iu(j)/j)−η

∑u(j)
s=1 s−η

.

First we need to “invert” Corollary 3.4 to obtain a statement which gives infor-
mation about the vertex process for many times t0 earlier than t.

Lemma 4.2. Let j0 =
√

t log3/(4p−2) t. Then wep for every i and j with 2 log3 t <
i < j ≤ Nt + 1 and j > j0, the vertex with label j at time t was added at time

t̂ =
j(2p−1)/pNt

(1−p)/p

2p− 1

(
1 + O(log−1/2 t)

)
.

Furthermore, if we let î denote the label in Gt̂ of the vertex of label i in Gt, then
wep

î =
iNt̂

j

(
1 + O(log−1/2 t)

)
=

iu(j)

j

(
1 + O(log−1/2 t)

)
.
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Proof. Put tI = c′t1/(2p) log3/(2p) t for some c′ > 0. Then for tI ≤ t0 ≤ t, wept0 is
equivalent to wep. Also, for any such t0, we may apply Corollary 3.4 since, for
appropriate c in that corollary, t < tF . Since a polynomial number of statements
holding individually wep also hold jointly wep, we deduce that wep, (8–10) hold
simultaneously for all t0 in the range tI ≤ t0 ≤ t. By the same argument and
Lemma 3.1, we have that wep

Nt0 = (2p− 1)t0 + O
(√

t0 log t0

)
(12)

for all t0 in the same range.
For some fixed C > 0, define t1 = bt∗1c where

t∗1 =
j(2p−1)/pNt

(1−p)/p
(
1− C log−1/2 t

)

2p− 1
.

In view of the conclusions above, the following statements hold wep. From (12),
for every t3, tI ≤ t3 ≤ t1

Nt3 = (2p− 1)t3
(
1 + O(t

−1/2
3 log t3)

)

≤ (2p− 1)t∗1
(
1 + O(t

−1/2
3 log t3)

)

= j(2p−1)/pNt
(1−p)/p

(
1− C log−1/2 t

)(
1 + O(t

−1/2
I log tI)

)

≤ j(2p−1)/pNt
(1−p)/p

(
1− c′′C log−1/2 tI

)

≤ j(2p−1)/pNt
(1−p)/p

(
1− c′′C log−1/2 t3

)
,

where c′′ > 0 is a constant, since t = Θ(t2p
I / log3 tI). Now from the statement

above using (9), for sufficiently large C, all vertices added at any time in the
interval [tI , t1] have label strictly less than j if they survive until time t. This
statement holds wep.

Note that for small enough c′, tI can be made an arbitrarily small fraction of t1.
So for any time t̂, t1/2 < t̂ < tI , we may apply the same argument but reducing
the value of t to a smaller value, t′, and if convenient reducing j to a smaller value,
j′, to deduce that wep the vertex added at time t̂ has label strictly less than j
at time t′, if it survives until then. Since the label of a vertex cannot increase as
the process continues, this is also true at time t. We may thus extend the interval
to encompass all vertices added in the time interval [t1/2, t1]. Of course, vertices
added before this interval have label less than t1/2 < j0 ≤ j. So for sufficiently
large C, wep all vertices added at any time before t1 have label strictly less than
j if they survive until time t.

Similarly if we define t2 = dt∗2e where

t∗2 =
j(2p−1)/pNt

(1−p)/p
(
1 + C log−1/2 t

)

2p− 1
.

Then wep all vertices added at any time in the interval [t2, t] have label strictly
greater than j at time t, if they survive until then.
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We deduce from these conclusions that wep for all j ∈ [j0, Nt], the vertex with
label j at time t was added at some time between t1 = t1(j) and t2 = t2(j). In view
of Corollary 3.4, we may approximate Nt by n, and this gives the first statement
in the lemma.

Again from the above observations, the number of vertices at such a time t̂,
t1 ≤ t̂ ≤ t2, is wep equal to (recalling the definitions (11) etc.)

Nt̂ = t̂(2p− 1)
(
1 + O(t̂−1/2 log t̂)

)

= j(2p−1)/pn(1−p)/p
(
1 + O(log−1/2 t)

)

= u(j)
(
1 + O(log−1/2 t)

)
.

Taking t0 ∈ [t1, t2], as mentioned above, we may assume that (10) holds wep.
Hence, using a sandwiching argument as above (but for positions rather than

times), if we let î denote the label in Gt0 of the vertex of label i in Gt, then wep

î =
iNt0

j

(
1 + O(log−1/2 t)

)
=

iu(j)

j

(
1 + O(log−1/2 t)

)
.

(Note in particular the condition 2 log3 t ≤ i ensures that the condition îJt

Nt0
<

log3 t0 wep does not hold.) This gives the second assertion of the lemma. ¤

We will use the following lemma to estimate the probability that pairs of vertices
are adjacent in Gt, and others are not.

Lemma 4.3. Let 0.5 < p ≤ 1, d ∈ N, 0 < η < 1,

E1, E2 ⊆ {{vi, vj} : 2 log3 t < i < j ≤ Nt + 1 and j ≥ j0}, E1 ∩ E2 = ∅ .

For every i, j ∈ [Nt + 1], r = 1, 2, let

Vr(j) = {i : i < j and {vi, vj} ∈ Er} ,

wr(j) =
∑

i∈Vr(j)

w(i, j) ,

and assume that |V1(j)| ≤ d for every j ∈ [n].
Let Pt(E1, E2, p, d, η) denote the probability that all pairs from E1 are edges of

Pt(p, d, η), and no pair from E2 is an edge of Pt(p, d, η). Then

Pt(E1, E2, p, d,η) ≤ o(exp(− log3/2 t))

+
n∏

j=1

[1− (1 + O(log−1/2 t))w2(j)]
d−|V1(j)|

× [d]|V1(j)|
∏

i∈V1(j)

(1 + O(log−1/2 t))w(i, j),
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and

Pt(E1, E2, p, d,η) ≥ o(exp(− log3/2 t))

+
n∏

j=1

[1− (1 + O(log−1/2 t))(w1(j) + w2(j))]
d−|V1(j)|

× [d]|V1(j)|
∏

i∈V1(j)

(1 + O(log−1/2 t))w(i, j).

Proof. For this we need to consider the edge process as defined at the start of this
proof. To obtain conclusions wep, we may condition on any of the times t0 that
vertex of label j in Gt was added in the vertex process, with t1(j) ≤ t0 ≤ t2(j).
The assertion then follows from Fact 4.1, Lemma 4.2 and the definition of the edge
process. ¤

From the above lemma it follows that the behaviour of the protean graph
Pt(p, d, η) is related to that of random graph with vertex set [n] in which two
vertices i, j, 2 log3 t ≤ i < j ≤ n, j0 ≤ j, are adjacent with probability

p(i, j) = dw(i, j) = d(1− η)n(p−1)/pjη+(1−2p)/pi−η ,

independently for each such pair.
Indeed, if |V1(j)| = o(d) for every j ∈ [n], then Lemma 4.3 gives

Pt(E1, E2, p, d, η) ∼
n∏

j=1

(
1−

∑

i∈V2(j)

w(i, j)
)d

d|V1(j)| ∏

i∈V1(j)

w(i, j)

= (1 + o(1)) exp
(
−

∑

{i,j}∈E2

p(i, j)
) ∏

{i,j}∈E1

p(i, j) ,

whereas if we consider a graph with independent edges, the probability that an
analogous event holds is equal to

∏

{i,j}∈E2

(
1− p(i, j)

) ∏

{i,j}∈E1

p(i, j)

= (1 + o(1)) exp
(
−

∑

{i,j}∈E2

p(i, j)
) ∏

{i,j}∈E1

p(i, j) .

Finally, note that the situation with these results is similar to that in [6]: since
we claim nothing about edges between ‘small’ vertices i, 1 ≤ i < 2 log3 t, it is diffi-
cult to obtain a general theorem which relates properties of our model to the model
with independent edges (as is done, for instance, for a different model by Chung
and Lu [4]). For the same reason we cannot use the general theory of Bollobás,
Janson and Riordan [1] of inhomogeneous sparse random graphs. Nonetheless,
as in [6], our Lemma 4.3 is strong enough to show that many properties of the
independent model which, roughly speaking, do not depend on the behaviour of
the first 2 log3 t vertices, hold also for the growing protean graph. We discuss some
examples in the next section.
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5. Degrees of vertices, and connectivity

In this section we study the shape of the degree sequence of Pt(p, d, η), and its
connectivity. The proofs are virtually the same as for the corresponding results
in [6], but with our new Lemma 4.3 in place of Lemma 3.5 of that paper. We begin

with the expected degree of vertex vi. Recall that j0 = j0(t) =
√

t log3/(4p−2) t and
n = n(t) = (2p− 1)t.

Theorem 5.1. Let 0.5 < p ≤ 1, d = o
(
t(1−η)/3

)
and 0 < η < 1. Then the expected

degree of a vertex vi=i(t) is given by

Ed(vi) ∼ d
1− η

(1− p)/p + η

((n

i

)η

+
(1− 2p)/p + 2η

1− η

( i

n

)(1−p)/p)

for j0 < i ≤ Nt + 1 and

Ed(vi) ∼ d
1− η

(1− p)/p + η

(n

i

)η

for 2 log3 t < i ≤ j0. Moreover, the expected number of edges in the protean graph
Pt(p, d, η) is equal to (1 + o(1))pdn.

Note that for small i = o(n), the expected degree of the vertex vi is dominated
by the factor d 1−η

(1−p)/p+η

(
n
i

)η
. Consequently, the degrees of the protean graph

Pt(p, d, η), are distributed according to a power law. More specifically, let Zk =
Zk(n; p; d; η) denote the number of vertices of degree k in Pt(p, d, η) and Z≥k =∑

`≥k Z`. Here and below a.a.s. means ‘with probability tending to 1 as n →∞’.

Theorem 5.2. Let 0.5 < p ≤ 1, d ∈ N, 0 < η < 1, k = k(n) ≥ log2 n, and
d = o(k). Then a.a.s.

Z≥k = (1 + o(1))n
( 1− η

(1− p)/p + η
· d

k

)1/η

+ O(log3 n) .

As with the non-growing protean graph in [6], we may attune the parameters
of this model to obtain roughly the same degree distribution as the (undirected)
web graph.

We next consider connectivity of Pt(p, d, η). Let ρt(p, d, η) denote the probabil-
ity that Pt(p, d, η) is connected.

Theorem 5.3. Let 0.5 < p ≤ 1, 0 < η < 1 and d = d(n) = a log n, where a is a
positive constant. Then

lim
t→∞

ρt(p, d, η) =

{
1 if a > 1/g(x0)

0 if a < 1/g(x0) ,

where

g(x) =
1− η

(1− p)/p + η
(x−η − x(1−p)/p)− log(1− x(1−p)/p) ,

and x0 = x0(p, η) is a value of x which minimizes function g(x) in the interval
(0, 1).
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We observe that, as for the model in [6], a.a.s. near the threshold all isolated
vertices have labels (1+o(1))x0(p, η) n. The probability of being isolated is greatest
for the vertices of medium labels since they have lost their ‘old’ neighbours which
have already been deleted, yet they are not old enough to attract the ‘new’ ones.
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