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Abstract. Pursuit-evasion games, such as the game of Cops and Robbers, are a
simplified model for network security. In these games, cops try to capture a robber
loose on the vertices of the network. The minimum number of cops required to win
on a graph G is the cop number of G. We present asymptotic results for the game
of Cops and Robbers played in various stochastic network models, such as in G(n, p)
with non-constant p, and in random power law graphs. We find bounds for the cop
number of G(n, p) for a large range of p as a function of n. We prove that the cop
number of random power law graphs with n vertices is asymptotically almost surely
Θ(n). The cop number of the core of random power law graphs is investigated, and
is proved to be of smaller order than the order of the core.

1. Introduction

Suppose that an intruder is loose on the vertices of a network, and travels between
adjacent vertices. The intruder could represent a virus or hacker, or some other ma-
licious agent intent on avoiding capture. A set of searchers are attempting to capture
the intruder. Although placing a searcher on each vertex guarantees the capture of
the intruder, it is a more interesting (and more difficult) problem to find the minimum
number of searchers required to capture the intruder. A motivation for minimizing the
number of searchers comes from the fact that fewer searchers require fewer resources.
Networks that require a smaller number of searchers may be viewed as more secure
than those where many searchers are needed.

A pursuit-evasion games, such as Cops and Robbers, may be viewed of as a simplified
model for such network security problems. The game of Cops and Robbers, introduced
independently by Nowakowski and Winkler [16] and Quilliot [18] over twenty years ago,
is played on a fixed graph G, and is our focus in this study. We will always assume that
G is undirected, simple, and finite. There are two players, a set of k cops (or searchers),
where k > 0 is a fixed integer, and the robber. The cops begin the game by occupying
a set of k vertices. The robber then chooses a vertex, and the cops and robber move
in alternate rounds. The players use edges to move from vertex to vertex. More than
one cop is allowed to occupy a vertex, and the players may remain on their current
vertex. The players know each others current locations. The cops win and the game
ends if at least one of the cops can eventually occupy the same vertex as the robber;
otherwise, the robber wins. As placing a cop on each vertex guarantees that the cops
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win, we may define the cop number, written c(G), which is the minimum number of
cops needed to win on G. The cop number was introduced by Aigner and Fromme [1]
who proved (among other things) that if G is planar, then c(G) ≤ 3. For a survey of
results on vertex pursuit games such as Cops and Robbers, the reader is directed to the
surveys [2, 11, 12].

Over the last few years there was an explosion of mathematical research related to
stochastic models of real-world networks, especially for models of the web graph. Many
technological, social, biological networks have properties similar to those present in the
web, such as power law degree distributions and the small world property. Following
[9], we refer to these networks as complex. For example, power laws have been observed
in protein-protein interaction networks, and social networks such as the one formed
by scientific collaborators. While much of the earlier mathematical work on complex
networks focused on designing models satisfying certain properties such as power law de-
gree distributions, new approaches are constantly emerging. For additional background
on complex networks and their models, see [3, 9].

In this paper, which is the full version of [7], we study vertex pursuit games in
random graph models, including models for complex networks. While Cops and Robbers
have been extensively studied in highly structured deterministic graphs such as graph
products (see [15]), our work is the first to consider such games in models of complex
networks.

All asymptotics throughout are as n → ∞. We say that an event in a probability
space holds asymptotically almost surely (a.a.s.) if the probability that it holds tends
to 1 as n goes to infinity. For p ∈ (0, 1) or p = p(n) tending to 0 with n, define
Ln = log 1

1−p
n. We denote the incomplete gamma function by Γ(·, ·).

We consider Erdős, Rényi G(n, p) random graphs and their generalizations used to
model complex networks. The random graph G(n, p) consists of the probability space
(Ω,F ,P), where Ω is the set of all graphs with vertex set [n] = {1, 2, . . . , n}, F is the
family of all subsets of Ω, and for every G ∈ Ω

P(G) = p|E(G)|(1− p)(
n
2)−|E(G)| .

This space may be viewed as
(

n
2

)
independent coin flips, one for each pair of vertices,

where the probability of success (that is, drawing an edge) is equal to p. Note that
p = p(n) can tend to zero as n tends to infinity.

The cop number of G(n, p) was studied in [6], where the following result was proved.

Theorem 1.1. Let 0 < p < 1 be fixed. For every real ε > 0 a.a.s. for G ∈ G(n, p)

(1− ε)Ln ≤ c(G) ≤ (1 + ε)Ln.

The problem of determining the cop number of G(n, p) where p = p(n) is a function
of n was left open in [6]. In [5] it was shown that the cop number of G(n, p) is always
bounded from above by n1/2+o(1) and this bound is achieved for sparse random graphs.
More precisely, they showed that c(G(n, p)) ≤ 160000

√
n log n for np ≥ 2.1 log n and

c(G(n, p)) ≥ 1

(np)2
n

1
2

log log(np)−9
log log(np)
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for np → ∞. Since if either np = no(1) or np = n1/2+o(1), then a.a.s. c(G(n, p)) =
n1/2+o(1), it would be natural to assume that the cop number of G(n, p) is close to

√
n

also for np = nα+o(1), where 0 < α < 1/2. In [14] it was shown that the actual behaviour
of c(G(n, p)) is more complicated. The function f : (0, 1) → R defined as

f(x) =
logE(c(G(n, nx−1)))

log n
,

where E(c(G(n, p))) denotes the expected value of the cop number for G(n, p). The
main result of [14] was that f has an unexpected zigzag shape; see Figure 1.

Figure 1. The ‘zigzag’ function f .

In the next subsection, we show that if np = nα+o(1), where 1/2 < α ≤ 1, then a.a.s.

c(G(n, p)) = Θ(log n/p) = n1−α+o(1)

and c(G(n, n−1/2+o(1))) = n1/2+o(1) a.a.s. This result is used in [14] where the main focus
is on 0 < α < 1/2.

Recent work of Chung and Lu [8, 9] supplies an extension of the G(n, p) random
graphs to random graphs G(w) with given expected degree sequence w. For example, if
w follows a power law distribution, then G(w) supplies a model for complex networks.
We determine bounds on the cop number of random power law graphs as discussed in
the next subsection.

1.1. Results. We consider the cop number in classical random graphs and for random
power law graphs. The proofs of the results in this subsection may be found in Section 2.
We consider the cop number of G(n, p(n)) when p(n) is a function of n. We will abuse
notation and refer to p rather than p(n). For G(n, p) our main results are summarized
in the following theorem.

Theorem 1.2.

(1) Suppose that p ≥ p0 where p0 is the smallest p for which

p2/40 ≥ log
(
(log2 n)/p

)

log n
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holds. Then a.a.s. G ∈ G(n, p) satisfies

Ln− L(
(p−1Ln)(log n)

) ≤ c(G) ≤ Ln− L(
(Ln)(log n)

)
+ 2.

(2) If (2 log n)/
√

n ≤ p = o(1) and ω(n) is any function tending to infinity, then
a.a.s. G ∈ G(n, p) satisfies

Ln− L(
(p−1Ln)(log n)

) ≤ c(G) ≤ Ln + L(ω(n)).

The proof may be found in Subsection 2.1 below. By Theorem 1.2, we have the
following corollary.

Corollary 1.3. If p = n−o(1) and p < 1, then a.a.s. G ∈ G(n, p) satisfies

c(G) = (1 + o(1))Ln.

Indeed, from part (1) it follows that if p is a constant, then

c(G) = Ln− 2L log n + Θ(1) = (1 + o(1))Ln.

From part (2), for p = n−o(1) tending to zero with n, the lower bound is

Ln− L(
(p−1Ln)(log n)

)
= Ln− 2L

(
(1 + o(1))p−1 log n

)

= Ln− 2L
(
no(1)

)

= (1 + o(1))Ln.

Note also that for p = n−a(1+o(1)) (0 < a < 1/2) we do not have a concentration for
c(G) but the following bounds hold

(1 + o(1))(1− 2a)Ln ≤ c(G) ≤ (1 + o(1))Ln.

We now describe results for the cop number of random power law graphs. Let

w = (w1, . . . , wn)

be a sequence of n nonnegative real numbers. We define a random graph model, written
G(w), as follows. Typically, vertices are integers in [n]. Each potential edge between i
and j is chosen independently with probability pij = wiwjρ, where

ρ =
1∑n

i=1 wi

.

We will always assume that

max
i

w2
i <

n∑
i=1

wi,

which implies that pij ∈ [0, 1). The model G(w) is referred to as random graphs with
given expected degree sequence w. Observe that G(n, p) may be viewed as a special case
of G(w) by taking w to be equal the constant n-sequence (pn, pn, . . . , pn).

Given β > 2, d > 0, and a function M = M(n) = o(
√

n) (with M tending to infinity
with n), we consider the random graph with given expected degrees wi > 0, where

wi = ci−
1

β−1 (1)



PURSUIT-EVASION IN MODELS OF COMPLEX NETWORKS 5

for i satisfying i0 ≤ i < n + i0. The term c depends on β and d, and i0 depends also on
M ; namely,

c =

(
β − 2

β − 1

)
dn

1
β−1 , i0 = n

(
d

M

(
β − 2

β − 1

))β−1

. (2)

It is not hard to show (see [8, 9]) that a.a.s. the random graphs with the expected
degrees satisfying (1) and (2) follow a power law degree distribution with exponent β,
average degree (1 + o(1))d, and maximum degree (1 + o(1))M .

Our next theorem demonstrates that the cop number of random power law graphs is
a.a.s. Θ(n), and so is of much larger order than the logarithmic cop number of G(n, p)
random graphs. Hence, these results are suggestive that in power law graphs, on average
a large number of cops are needed to secure the network.

Theorem 1.4. For a random power law graph G ∈ G(w) with exponent β > 2 and
average degree d, a.a.s. the following hold.

(1) If X is the random variable denoting the number of isolated vertices in G(w),
then

c(G) ≥ X

= (1 + o(1))n

∫ 1

0

exp

(
−d

β − 2

β − 1
x−1/(β−1)

)
dx

= (1 + o(1))(d(β − 2))β−1(β − 1)2−βnΓ

(
1− β, d

β − 2

β − 1

)
.

(2) For a ∈ (0, 1), define

f(a) = a +

∫ 1

a

exp

(
−d

β − 2

β − 1
a(β−2)/(β−1)x−1/(β−1)

)
dx.

Then
c(G) ≤ (1 + o(1))n min

0<a<1
f(a).

The proof of Theorem 1.4 may be found in Subsection 2.3. We note that integrals
in the statement of Theorem 1.4 do not possess closed-form solutions in general. We
supply numerical values for lower/upper bounds of the cop number of G(w) when
d = 10, 20 and β = 2.1, 2.7 (note that the values of d = 10 and β = 2.1 coincide with
earlier experimental results found in the web graph; see for example the survey [3]).

Table 1. Upper and lower bounds for the cop number of G(w) for var-
ious values of d (top row) and β (left column).

10 20

2.1 0.1806/0.2940 0.5112 · 10−1/0.1265
2.7 0.4270 · 10−2/0.1895 0.4205 · 10−4/0.8261 · 10−1

While Theorem 1.4 suggests a large number of cops are needed to secure complex
networks against intruders, by item (1) it is the abundance of isolated vertices that
makes the cop number equal to Θ(n). To overcome the issue with isolated vertices, we
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consider restricting the movements of the cops and robber to the subgraph induced by
sufficiently high degree vertices.

Fix β ∈ (2, 3). Define the core of a graph G, written Ĝ, as the subgraph induced
by the set of vertices of degree at least n1/ log log n. Random power law graphs with
β ∈ (2, 3) are referred to as octopus graphs in [9], since the core is dense with small
diameter O(log log n) and the overall diameter is O(log n). For G ∈ G(w), since the
expected degree of vertex i in G is

wi =
β − 2

β − 1
dn1/(β−1)i−1/(β−1),

vertices with expected degree at least n1/ log log n have labels at most

iN =

(
β − 2

β − 1
d

)β−1

n1−(β−1)/ log log n .

The order of the core is written N . By Chernoff’s bound,

N = (1 + o(1))iN − i0 = (1 + o(1))iN = Θ(n1−(β−1)/ log log n) ,

provided that log M À (log n)/ log log n. Thus,

n = N1+(β−1)/ log log N+Θ(1)/ log2 log N . (3)

We consider the cop number of the core of random power law graphs (so the cop and
robber are restricted to movements within the core). As vertices in the core informally
represent the hubs of the network, one would suspect that the cop number of the core
is of smaller order than the core itself. This intuition is made precise by the following
theorem, which provides a sublinear upper bound for the cop number of the core. The
proof is deferred to Subsection 2.4.

Theorem 1.5. For a random power law graph G ∈ G(w) with power law exponent

β ∈ (2, 3) a.a.s. the cop number of the core Ĝ of G satisfies

N (1+o(1))(3−β)/ log log N ≤ c(Ĝ) ≤ N1−(1+o(1))(β−1)(3−β)/(β−2) log log n.

As the asymptotic bounds in Theorem 1.5 are not tight, it is an interesting open
problem to determine the asymptotic value of the cop number of the core of random
power law graphs.

2. Proofs of Main Results

The remainder of the paper is devoted to the proof of our three main theorems. Each
subsequent subsection contains a proof of the required bounds in each theorem. In all
cases, the upper bound for the cop number is provided by a corresponding bound of the
domination number. In all cases except the proof of Theorem 1.4 (which estimates the
number of isolated vertices), a lower bound for the cop number is derived by considering
an appropriate adjacency property. A minor detour is made in Subsection 2.2, which
gives a concentration result for the cop number in sparse G(n, p) random graphs.
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2.1. Proof of Theorem 1.2. We first prove the upper bound in item (1), and require
some background on the domination number of a graph. A set of vertices S is a
dominating set in G if each vertex not in S is joined to some vertex of S. The domination
number of G, written γ(G), is the minimum cardinality of a dominating set in G. A
straightforward observation is that

c(G) ≤ γ(G), (4)

(place a cop on each vertex of dominating set with minimum cardinality). However,
if n ≥ 1, then c(Pn) = 1 (where Pn is a path with n vertices) and γ(Pn) =

⌈
n
3

⌉
. The

bound of (4) while useful, is far from tight in general. Domination in models of complex
networks were considered by Cooper et al. in [10].

The upper bound in Theorem 1.2 (1) follows by the following result proved in [19].

Theorem 2.1. Suppose that p ≥ p0(n) where p0 is the smallest p for which

p2/40 ≥ log
(
(log2 n)/p

)

log n

holds. Then a.a.s. G ∈ G(n, p) satisfies

bLn− L(
(Ln)(log n)

)c+ 1 ≤ γ(G) ≤ bLn− L(
(Ln)(log n)

)c+ 2.

For item (2), the proof follows by the following theorem.

Theorem 2.2. If p = o(1) and ω(n) is any function tending to infinity with n, then
a.a.s. G ∈ G(n, p) satisfies

γ(G) ≤ dLn + L(ω(n))e .

Proof. Since p = o(1) we have that

Ln =
log n

− log(1− p)
= (1 + o(1))

log n

p
. (5)

The probability that the domination number of a random graph is at most

k = dLn + L(ω(n))e
is bounded from below by the probability that any fixed set of k vertices is a dominating
set. But the latter probability is equal to

(
1− (1− p)k

)n−k ≥ 1− (n− k)(1− p)k

≥ 1− n(1− p)k

≥ 1− n(1− p)Ln+L(ω(n))

= 1− 1

ω(n)

= 1− o(1) .

¤
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For the proofs of the lower bounds in Theorem 1.2, we employ the following adjacency
property. For a fixed k > 0 an integer, we say that G is (1, k)-existentially closed (or
(1, k)-e.c.) if for each k-set S of vertices of G and vertex u 6∈ S, there is a vertex z /∈ S
not joined to a vertex in S and joined to u. If G is (1, k)-e.c., then c(G) ≥ k (the
robber may use the property to escape to a vertex not joined to any vertex occupied
by a cop).

The lower bound in Theorem 1.2 will follow once we prove the following theorem.

Theorem 2.3. If p > (2 log n)/
√

n and

k =
⌊
Ln− L(

(p−1Ln)(log n)
)⌋

, (6)

then a.a.s. G ∈ G(n, p) is (1, k)-e.c.

Note that we do not use the condition for p in the proof of the theorem. The condition
is introduced in order to get a non-trivial result; the value of k is negative otherwise.

Proof. Assume that p = o(1). Then

k = Ln− L
(

(1 + o(1))
log2 n

p2

)

= Ln− 2L
(

(1 + o(1))
log n

p

)
.

Fix S a k-subset of vertices and a vertex u not in S. For a vertex x ∈ V (G)\(S∪{u}),
the probability that a vertex x is joined to u and to no vertex of S is p(1− p)k. Since
edges are chosen independently, the probability that no suitable vertex can be found
for this particular S and u is (1− p(1− p)k)n−k−1.

Let X be the random variable counting the number of S and u for which no suitable
x can be found. We then have that

E(X) =

(
n

k

)
(n− k)

(
1− p(1− p)k

)n−k−1

≤ nk+1

(
1− (Ln)(log n)

n

)n(1−(Ln)/n)

= nk+1 exp (−(Ln)(log n)(1− (Ln)/n)) (1 + o(1))

= nk+1 exp
(−(Ln− (Ln)2/n)(log n)(1 + o(1))

)

≤ nk+1 exp

(
−

(
k +

2 log log n

p
− 2 log2 n

p2n

)
(log n)(1 + o(1))

)

= nk+1 exp

(
−

(
k +

2 log log n

p

)
(log n)(1 + o(1))

)

= o(1),

where the second inequality follows by (5). It is also easy to show that the same
argument holds for p a constant. The proof now follows by Markov’s inequality. ¤
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2.2. Extreme cases. It is known that if p is tending to one pretty fast, then the
maximum degree of a random graph is very large. Formally, for a fixed non-negative
integer k, if n(1− p)− log n− k log log n → −∞, then the maximum degree is at least
n − 1 − k a.a.s. and clearly k + 1 is an upper bound for a cop number (one cop can
occupy a vertex with maximum degree). In fact

p = p(n) = 1−
(

k log n

n

) 1
k

is the threshold for the cop number k + 1 (see [17] for more).
We next provide a concentration result for the cop number of the random graphs

G(n, p) for p approaching zero very fast. For example, if p = o(1/n2), a.a.s. G ∈ G(n, p)
is empty. In this range of p a.a.s. the cop number of G is n. We now consider the case
when p = d/n for constant d ∈ (0, 1). Bollobás [4] proved the following result.

Theorem 2.4. Let 0 < d < 1, p = d/n, and let X be the number of tree connected
components of G(n, p). Then the expectation of X is

E(X) = u(d)n + O(1),

where

u(d) =
1

d

∞∑

k=1

kk−2

k!
(de−d)k.

A.a.s. G(n, p) satisfies

|X| = (1 + o(1))u(d)n.

We note that u(d) ∈ (0, 1). A graph is unicyclic if it contains exactly one cycle.

Theorem 2.5. Let 0 < d < 1 and p = d/n. Then a.a.s. G ∈ G(n, p) is such that every
connected component is a tree or a unicyclic graph, and there are at most log log n
vertices in the unicyclic components.

Trees are cop-win graphs, while unicyclic graphs have cop number at most 2. Each
tree component requires exactly one cop, while there are at most 2 log log n many cops
needed for all the unicyclic components. Hence, the number of cops on the unicyclic
components becomes negligible in contrast to the number of cops on the tree com-
ponents. Therefore, from Theorems 2.4 and 2.5 we have the following concentration
result.

Corollary 2.6. Let 0 < d < 1, p = d/n. Then for the graph G ∈ G(n, p),

E(c(G)) = u(d)n + O(log log n).

A.a.s. G ∈ G(n, p) satisfies

c(G) = (1 + o(1))u(d)n.
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2.3. The proof of Theorem 1.4.

Proof. For the lower bound, we exploit the fact that the cop number is bounded from
below by the number of isolated vertices: one cop is needed per isolated vertex. In
general power law graphs, there may exist an abundance of isolated vertices, even as
much as Θ(n) many. We show that this is indeed the case for random power law graphs.

The probability that the vertex i for i0 ≤ i < n+ i0 (that is, the vertex i corresponds
to the weight wi) is isolated is equal to

pi =
∏

j,j 6=i

(1− wiwjρ)

=
∏

j,j 6=i

exp (−wiwjρ(1 + o(1)))

= exp

(
−wiρ

∑

j,j 6=i

wj(1 + o(1))

)

= exp (−wi(1 + o(1))) . (7)

Let Xi be an indicator random variable for the event that the vertex i is isolated. Then

P(Xi = 1) = 1− P(Xi = 0) = pi

for i0 ≤ i < n + i0.
Let X be the number of isolated vertices in G(w). As X =

∑
i0≤i<n+i0

Xi, it follows
from (7) that the expected value of X is

∑
i0≤i<n+i0

pi = (1 + o(1))n

∫ 1

0

exp
(−c(xn)−1/(β−1)

)
dx

= (1 + o(1))n

∫ 1

0

exp

(
−d

β − 2

β − 1
x−1/(β−1)

)
dx .

A sum of independent random variables with large enough expected value is concen-
trated on its expected value (see, for example, Theorem 2.8 in [13]). Thus, the number
of isolated vertices in G(w) is a.a.s. equal to

X = (1 + o(1))n

∫ 1

0

exp

(
−d

β − 2

β − 1
x−1/(β−1)

)
dx

= (1 + o(1))(d(β − 2))β−1(β − 1)2−βn

∫ ∞

d β−2
β−1

t−βe−tdt

= (1 + o(1))(d(β − 2))β−1(β − 1)2−βnΓ

(
1− β, d

β − 2

β − 1

)
.

Hence, item (1) of Theorem 1.4 follows. We note that another asymptotic expression
of the number of isolated vertices in random power law graphs is given in [9] (see
Theorem 5.20).

For the proof of the upper bound in item (2) of Theorem 1.4, we give a bound on
the domination number. Fix a constant a ∈ (0, 1) and consider the set A ⊆ V of first



PURSUIT-EVASION IN MODELS OF COMPLEX NETWORKS 11

banc− i0 + 1 = (1 + o(1))an vertices; that is, A = {i0, i0 + 1, . . . , banc}. Let B ⊆ V \A
denote the set of vertices that do not have a neighbour in A. Then D = A ∪ B is a
dominating set of G, and we estimate the cardinality of D.

Consider the vertex i, where an < i < n + i0. Since i0 = o(n), there is b ∈ (0, 1] such
that i = bn(1 + o(1)). The probability that i does not have a neighbour in A is equal
to

qi =
∏

j<an+i0

(1− wiwjρ)

= exp

(
−(1 + o(1))wiρ

∑
j<an+i0

wj

)

= exp

(
−(1 + o(1))c(bn)−1/(β−1)(dn)−1n

∫ a

0

c(xn)−1/(β−1)dx

)

= exp

(
−(1 + o(1))d

(β − 2

β − 1

)2

b−1/(β−1)

∫ a

0

x−1/(β−1)dx

)

= exp

(
−(1 + o(1))d

β − 2

β − 1
b−1/(β−1)a(β−2)/(β−1)

)
.

Thus, using Chernoff’s bound, we obtain that a.a.s.

|B| = (1 + o(1))n

∫ 1

a

exp

(
−d

β − 2

β − 1
a(β−2)/(β−1)x−1/(β−1)

)
dx ,

and that a.a.s.

|D| = |A ∪B|

= (1 + o(1))n

(
a +

∫ 1

a

exp

(
−d

β − 2

β − 1
a(β−2)/(β−1)x−1/(β−1)

)
dx

)
.

As this holds for every a ∈ (0, 1), the proof of item (2) follows. ¤

2.4. The proof of Theorem 1.5.

Proof. We first consider an upper bound for c(Ĝ) by using a dominating set. The
probability that there is an edge between two given vertices in the core is at least

pmin = w2
iN (1+o(1))ρ

= (n2/ log log n/dn)(1 + o(1))

= (N (3−β)/ log log N+Θ(1)/ log2 log n)/N (8)

= (N (1+o(1))(3−β)/ log log N)/N .
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Hence, Ĝ contains a random graph G(N, pmin). Thus, using Theorem 2.2, any set of
cardinality

kN =
⌈
log1/(1−pmin) N + log1/(1−pmin) ω(N)

⌉

= (1 + o(1))
log N

pmin

=
N log N

N (1+o(1))(3−β)/ log log N

= N exp (−(1 + o(1))(3− β)(log N)/ log log N + log log N)

= N exp (−(1 + o(1))(3− β)(log N)/ log log N)

= N/N (1+o(1))(3−β)/ log log N

= o(N)

is a dominating set a.a.s. (where ω(N) is any function tending to infinity with N).
As this holds for any set of cardinality kN , we obtain a smaller dominating set by
considering only vertices with the largest expected degree. Consider the subset of
vertices U = {i0, i0 + 1, . . . , k} of first k − i0 + 1 vertices, k À i0. Then

k∑
i=i0

ωi = c

∫ k

i0

i−1/(β−1)di + O(1) = (1 + o(1))c
β − 1

β − 2
k(β−2)/(β−1).

Hence, the probability that vertex i does not have a neighbour in U is equal to

q(i) =
k∏

j=i0

(1− ωiωjρ)

= exp

(
−(1 + o(1))ωiρ

k∑
j=i0

ωj

)

= exp

(
−(1 + o(1))

β − 2

β − 1
dn(3−β)/(β−1)i−1/(β−1)k(β−2)/(β−1)

)
.

It is straightforward to see that for all vertices i in the core,

q(i) ≤ q
(
iN(1 + o(1))

)

= exp
(−(1 + o(1))n(2−β)/(β−1)+1/ log log nk(β−2)/(β−1)

)
. (9)

Therefore, in order to make the right hand side of (9) equal to o(n−1), it is enough to
take

k = n1−(β−1)/(β−2) log log n log2(β−1)/(β−2) n

= n1−(1+o(1))(β−1)/(β−2) log log n

= N1−(1+o(1))(β−1)(3−β)/(β−2) log log n.

Now, the expected number of vertices that are not dominated by U is o(1), and the
assertion follows from Markov’s inequality. The upper bound now follows.
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For the lower bound, we can show that the core is a.a.s. (1, k)-e.c. for

k = log N/ log log N.

We do not present this argument here, but instead prove a better bound by considering
a weaker adjacency property. We will show that a.a.s. for all subsets S of vertices of
cardinality

K = N (3−β)/ log log N−1/ log3/2 log N = N (1+o(1))(3−β)/ log log N

and all vertices u 6∈ S with N/3 < u < 2N/3, there is a vertex x 6∈ (S ∪ {u}) with
N/3 < x < 2N/3, not joined to a vertex in S and joined to u. This will yield a lower
bound of K for the cop number since the robber can move only on vertices with labels
between N/3 and 2N/3 to avoid being captured.

Note that the probability that there is an edge between vertex in the core and vertex
with label between N/3 and 2N/3 is at most

pmax = MΘ(n1/ log log n)ρ

≤ n−1/2+1/ log log n

= N−1/2+(3−β)/2 log log N+Θ(1)/ log2 log N

(using (3) and the fact that M = o(
√

n)). A lower bound for the edge probability is
given by (8).

Let X be the random variable counting the number of ordered pairs of K-sets S and
vertices u with N/3 < u < 2N/3 for which no suitable vertex x with N/3 < x < 2N/3
can be found. Then

E(X) ≤ NK+1
(
1− pmin(1− pmax)

K
)Θ(N)−K−1

= NK+1
(
1−N−1+(3−β)/ log log N+Θ(1)/ log2 log N(1−N−1/2+Θ(1)/ log log N)K

)Θ(N)

= NK+1
(
1−N−1+(3−β)/ log log N+Θ(1)/ log2 log N

)Θ(N)

= exp
(
(K + 1) log N −N (3−β)/ log log N+Θ(1)/ log2 log N

)

= exp
(
N (3−β)/ log log N−Θ(1)/ log3/2 log N −N (3−β)/ log log N+Θ(1)/ log2 log N

)

= exp
(−N (1+o(1))(3−β)/ log log N

)

= o(1).

The proof now follows by Markov’s inequality. ¤
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