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Abstract. We present a deterministic model for on-line social networks based on transitivity and local knowl-
edge in social interactions. In the Iterated Local Transitivity (ILT) model, at each time-step and for every
existing node x, a new node appears which joins to the closed neighbour set of x. The ILT model provably
satisfies a number of both local and global properties that were observed in real-world on-line social and other
complex networks, such as a densification power law, decreasing average distance, and higher clustering than
in random graphs with the same average degree. Experimental studies of social networks demonstrate poor
expansion properties as a consequence of the existence of communities with low number of inter-community
links. A spectral gap for both the adjacency and normalized Laplacian matrices is proved for graphs arising
from the ILT model, thereby simulating such bad expansion properties.

1 Introduction

On-line social networks such as Facebook, MySpace, and Flickr have become increasingly popular in
recent years. In such networks, nodes represent people on-line, and edges correspond to a friendship
relation between them. In these complex real-world networks with sometimes millions of nodes and edges,
new nodes and edges dynamically appear over time. Parallel with their popularity among the general
public is an increasing interest in the mathematical and general scientific community on the properties
on-line social networks, in both gathering data and statistics about the networks, and in finding models
simulating their evolution. Data about social interactions on-line networks is more readily accessible and
measurable than in off-line social networks, which suggests a need for rigorous models capturing their
evolutionary properties.

The small world property of social networks, introduced by Watts and Strogatz [29], is a central
notion in the study of complex networks, and has roots in the work of Milgram [25] on short paths of
friends connecting strangers. The small world property posits low average distance (or diameter) and high
clustering, and has been observed in a wide variety of complex networks.

An increasing number of studies have focused on the small world and other complex network properties
in on-line social networks. Adamic et al. [1] provided an early study an on-line social network at Stanford
University, and found that the network has the small world property. Correlation between friendship
and geographic location was found by Liben-Nowell et al. [24] using data from LiveJournal. Kumar et
al. [21] studied the evolution of the on-line networks Flickr and Yahoo!360. They found (among other
things) that the average distance between users actually decreases over time, and that these networks
exhibit power-law degree distributions. Golder et al. [19] analyzed the Facebook network by studying
the messaging pattern between friends with a sample of 4.2 million users. They also found a power law
degree distribution and the small world property. Similar results were found in [2] which studied Cyworld,
MySpace, and Orkut, and in [26] which examined data collected from four on-line social networks: Flickr,
YouTube, LiveJournal, and Orkut. For further background on complex networks and their models, see
the books [5, 7, 10, 13].
? The authors gratefully acknowledge support from NSERC and MITACS grants.



Recent work by Leskovec et al. [22] underscores the importance of two additional properties of complex
networks above and beyond more traditionally studied phenomena such as the small world property.
A graph G with et edges and nt nodes satisfies a densification power law if there is a constant a ∈
(1, 2) such that et is proportional to na

t . In particular, the average degree grows to infinity with the
order of the network (in contrast to say the preferential attachment model, which generates graphs with
constant average degree). In [22], densification power laws were reported in several real-world networks
such as a physics citation graph and the internet graph at the level of autonomous systems. Another
striking property found in such networks (and also in on-line social networks; see [21]) is that distances in
the networks (measured by either diameter or average distance) decreases with time. The usual models
such as preferential attachment or copying models have logarithmically or sublogarithmically growing
diameters and average distances with time. Various models (such as the Forest Fire [22] and Kronecker
multiplication [23] models) were proposed simulating power law degree distribution, densification power
laws, and decreasing distances.

We present a new model, called Iterated Local Transitivity (ILT), for on-line social and other complex
networks which dynamically simulates many of their properties. Although modelling has been done ex-
tensively for other complex networks such as the web graph (see [5]), models of on-line social networks
have only recently been introduced (such as those in [12, 21, 24]). The central idea behind the ILT model
is what sociologists call transitivity : if u is a friend of v, and v is a friend of w, then u is a friend of w
(see, for example, [16, 28, 30]). In its simplest form, transitivity gives rise to the notion of cloning, where
u is joined to all of the neighbours of v. In the ILT model, given some initial graph as a starting point,
nodes are repeatedly added over time which clone each node, so that the new nodes form an independent
set. The ILT model not only incorporates transitivity, but uses only local knowledge in its evolution, in
that a new node only joins to neighbours of an existing node. Local knowledge is an important feature
of social and complex networks, where nodes have only limited influence on the network topology. We
stress that our approach is mathematical rather than empirical; indeed, the ILT model (apart from its
potential use by computer and social scientists as a simplified model for on-line social networks) should
be of theoretical interest in its own right.

Variants of cloning were considered earlier in duplication models for protein-protein interactions [3, 4, 9,
27], and in copying models for the web graph [6, 20]. There are several differences between the duplication
and copying models and the ILT model. For one, duplication models are difficult to analyze due to their
rich dependence structure. While the ILT model displays a dependency structure, determinism makes
it more amenable to analysis. The ILT model may be viewed as simplified snapshot of the duplication
model, where all nodes are cloned in a given time-step, rather than duplicating nodes one-by-one over
time. Cloning all nodes at each time-step as in the ILT model leads to densification and high clustering,
along with bad expansion properties (as we describe in the next paragraph).

We prove that the model exhibits a densification power law with exponent a = log 3
log 2 ; see Theorem 2. We

study the average distances and clustering coefficient of the model as time tends to infinity. In particular,
we show that the average distance of the model of time t converges to a function dependent on the Wiener
index of the initial graph; see Theorem 2. For many initial graphs, the average distance decreases, and
the diameter does not change over time. In Theorem 3, the clustering coefficient of the graph at time t
is estimated and shown to tend to 0 slower than a G(n, p) random graph with the same average degree.
Experimental studies of social networks (see Estrada [15]) demonstrate smaller expansion properties than
in other complex networks as a consequence of the existence of communities with low number of inter-
community links. Interestingly, this phenomena is found in the ILT model, where a smaller spectral gap
than in random graphs is found for both the normalized Laplacian (see Theorem 5) and adjacency (see
Theorem 7) matrices.



2 The ILT Model

We first give a precise formulation of the model. The ILT model generates simple, undirected graphs
(Gt : t ≥ 0) over a countably infinite sequence of discrete time-steps. The only parameter of the model is
the initial graph G0, which is any fixed finite connected graph. Assume that for a fixed t ≥ 0, the graph
Gt has been constructed. To form Gt+1, for each node x ∈ V (Gt), add its clone x′, such that x′ is joined
to x and all of its neighbours at time t. Note that the set of new nodes at time t + 1 form an independent
set of cardinality |V (Gt)|.

We write degt(x) for the degree of a node at time t, nt for the order of Gt, and et for its number of
edges. It is straightforward to see that nt = 2tn0. Given a node x at time t, let x′ be its clone. The simple
but important recurrences governing the degrees of nodes are given as

degt+1(x) = 2 degt(x) + 1, (1)
degt+1(x

′) = degt(x) + 1. (2)

2.1 Average Degree and Densification

We now consider the number of edges and average degree of Gt, and prove the following densification
power law for the ILT model. Define the volume of Gt by

vol(Gt) =
∑

x∈V (Gt)

degt(x) = 2et.

Theorem 1. For t > 0, the average degree of Gt equals
(

3
2

)t (
vol(G0)

n0
+ 2

)
− 2.

Note that Theorem 1 supplies a densification power law with exponent a = log 3
log 2 ≈ 1.58. We think that

the densification power law makes the ILT model realistic, especially in light of real-world data mined
from complex networks (see [22]). Theorem 1 follows immediately from Lemma 1, since the average degree
of Gt is vol(Gt)/nt.

Lemma 1. For t > 0,
vol(Gt) = 3tvol(G0) + 2n0(3t − 2t).

In particular,

et = 3t(e0 + n0)− nt.

Proof. By (1) and (2) we have that

vol(Gt+1) =
∑

x∈V (Gt)

degt+1(x) +
∑

x′∈V (Gt+1)\V (Gt)

degt+1(x
′)

=
∑

x∈V (Gt)

(2 degt(x) + 1) +
∑

x∈V (Gt)

(degt(x) + 1)

= 3vol(Gt) + nt+1. (3)

Hence by (3) for t > 0,

vol(Gt) = 3vol(Gt−1) + nt

= 3tvol(G0) + n0

(
t−1∑

i=0

3i2t−i

)

= 3tvol(G0) + 2n0(3t − 2t),

where the third equality follows by summing a geometric series.



2.2 Average Distance

Define the Wiener index of Gt as
W (Gt) =

∑

x,y∈V (Gt)

dt(x, y).

The Wiener index arises in applications of graph theory to chemistry, and may be used to define the
average distance of Gt as

L(Gt) =
W (Gt)(

nt

2

) .

We will compute the average distance by deriving first the Wiener index. Define the ultimate average
distance of G0, as

UL(G0) = lim
t→∞L(Gt)

assuming the limit exists. We provide an exact value for L(Gt) and compute the ultimate average distance
for any initial graph G0.

Theorem 2. 1. For t > 0,

W (Gt) = 4t

(
W (G0) + (e0 + n0)

(
1−

(
3
4

)t
))

.

2. For t > 0,

L(Gt) = 2


4t

(
W (G0) + (e0 + n0)

(
1− (

3
4

)t
))

4tn2
0 − 2tn0


 .

3. For all graphs G0,

UL(G0) =
2(W (G0) + e0 + n0)

n2
0

.

Further, UL(G0) ≤ L(G0) if and only if W (G0) ≥ (n0 − 1)(e0 + n0).

Note that the average distance of Gt is bounded above by diam(G0) + 1 (in fact, by diam(G0) in all
cases except cliques). Further, the condition in (3) for UL(G0) < L(G0) holds for large cycles and paths.
Hence, for many initial graphs G0, the average distance decreases, a property observed in on-line social
and other networks (see [21, 22]).

When computing distances in the model, the following lemma is helpful. As its proof is elementary,
we omit it.

Lemma 2. Let x and y be nodes in Gt with t > 0. Then

dt+1(x′, y) = dt+1(x, y′) = dt+1(x, y) = dt(x, y),

and

dt+1(x′, y′) =
{

dt(x, y) if xy /∈ E(Gt),
dt(x, y) + 1 = 2 if xy ∈ E(Gt).

Proof of Theorem 2. We only prove item (1), noting that items (2) and (3) follow from (1) by computation.
We derive a recurrence for W (Gt) as follows. To compute W (Gt+1), there are five cases to consider:
distances within Gt, and distances of the forms: dt+1(x, y′), dt+1(x′, y), dt+1(x, x′), and dt+1(x′, y′). The
first three cases contribute 3W (Gt) by Lemma 2. The 4th case contributes nt. The final case contributes
W (Gt) + et (the term et comes from the fact that each edge xy contributes dt(x, y) + 1).



Thus,

W (Gt+1) = 4W (Gt) + et + nt

= 4W (Gt) + 3t(e0 + n0).

Hence,

W (Gt) = 4tW (G0) +

(
t−1∑

i=0

4i
(
3t−1−i

)
(e0 + n0)

)

= 4tW (G0) + 4t(e0 + n0)

(
1−

(
3
4

)t
)

. ut

Diameters are constant in the ILT model. We record this as a strong indication of the (ultra) small
world property in the model.

Lemma 3. For all graphs G0 different than a clique,

diam(Gt) = diam(G0),

and diam(Gt) = diam(G0) + 1 = 2 when G0 is a clique.

2.3 The Clustering Coefficient and Degrees

The purpose of this subsection is to estimate the clustering coefficient of Gt. Let Nt(x) be the neighbour
set of x at time t, and let e(x, t) be the number of edges in the subgraph of Gt induced by Nt(x). For a
node x ∈ V (Gt) with degree at least 2 define

ct(x) =
e(x, t)(
degt(x)

2

) .

By convention ct(x) = 0 if the degree of x is at most 1. The clustering coefficient of Gt is

C(Gt) =

∑
x∈V (Gt)

ct(x)

nt
.

Our main result is the following.

Theorem 3.

Ω

((
7
8

)t

t−2

)
= C(Gt) = O

((
7
8

)t

t2

)
.

Observe that C(Gt) tends to 0 as t →∞. If we let nt = n (so t ∼ log2 n), then this gives that

C(Gt) = nlog2(7/8)+o(1). (4)

In contrast, for a random graph G(n, p) with comparable average degree pn = Θ((3/2)log2 n) = Θ(nlog2(3/2))
as Gt, the clustering coefficient is p = Θ(nlog2(3/4)) which tends to zero much faster than C(Gt).

We introduce the following dependency structure that will help us classify the degrees of nodes. Given
a node x ∈ V (G0) we define its descendant tree at time t, written T (x, t), to be a rooted binary tree with
root x, and whose leaves are all of the nodes at time t. To define the (k + 1)th row of T (x, t), let y be a
node in the kth row (y corresponds to a node in Gk). Then y has exactly two descendants on row k +1: y
itself and y′. In this way, we may identify the nodes of Gt with a length t binary sequence corresponding
to the descendants of x, using the convention that a clone is labelled 1. We refer to such a sequence as
the binary sequence for x at time t. We need the following technical lemma whose proof is omitted.



Lemma 4. Let S(x, k, t) be the nodes of T (x, t) with exactly k many 0’s in their binary sequence at time
t. Then for all y ∈ S(x, k, t)

2k(deg0(x) + 1) + t− k − 1 ≤ degt(y) ≤ 2k(deg0(x) + t− k + 1)− 1.

It follows from Lemma 4 that the number of nodes of degree at least k at time t, denoted by N(≥k),
satisfies

t∑

i=log2 k

(
t

i

)
≤ N(≥k) ≤

t∑

i=log2 k−log2 t

(
t

i

)
.

In particular, N(≥k) = Θ(nt) for k ≤ √
nt, and therefore, the degree distribution of Gt does not follow a

power law. Since
(

t
k

)
nodes have degree around 2k, the degree distribution has ‘binomial type’ behaviour.

We now prove the following lemma.

Lemma 5. For all x ∈ V (Gt) with k 0’s in their binary sequence, we have that

Ω(3k) = e(x, t) = O(3kt2).

Proof. For x ∈ V (Gt) we have that

e(x, t + 1) = e(x, t) + degt(x) +
degt(x)∑

i=1

(1 + degGt¹Nt(x)(x))

= 3e(x, t) + 2 degt(x),

where Gt ¹ Nt(x) is the subgraph induced by Nt(x) in Gt. For x′, we have that

e(x′, t + 1) = e(x, t) + degt(x).

Since there are k many 0’s and e(x, 2) is always positive for all initial graphs G0, e(x, t) ≥ 3k−2e(x, 2) =
Ω(3k) and the lower bound follows.

For the upper bound, a general binary sequence corresponding to x is of the form

(1, . . . , 1, 0, 1, . . . , 1, 0, 1, ..., 1, 0, 1, . . . , 1, 0, 1, . . . , 1)

with the 0’s in positions ik (1 ≤ i ≤ k). Consider a path in the descendant tree from the root of the tree
to node x. By Lemma 4, the node on the path in the ith row (i < ij) has (at time i) degree O(2j−1t).

Hence, the number of edges we estimate is O(t2) until the (i1− 1)th row, increases to 3O(t2)+ O(21t)
in the next row, and increases to 3O(t2) + O(21t2) in the (i2 − 1)th row. By induction, we have that

e(x, t) = 3(. . . (3(3O(t2) + O(21t2)) + O(22t2)) . . . ) + O(2kt2)

= O(t2)3k
k∑

i=0

(
2
3

)j

= O(3kt2). ut
We now prove our result on clustering coefficients.

Proof of Theorem 3. For x ∈ V (Gt) with k many 0’s in its binary sequence, by Lemmas 4 and 5 we have
that

c(x) = Ω

(
3k

(2kt)2

)
= Ω

((
3
4

)k

t−2

)
,

and

c(x) = O

(
3kt2

(2k)2

)
= O

((
3
4

)k

t2

)
.



Hence, since we have n0

(
t
k

)
nodes with k many 0’s in its binary sequence,

C(Gt) =

∑t
k=0 n0

(
t
k

)
Ω

((
3
4

)k
t−2

)

n02t
= Ω

(
t−2

(
1 + 3

4

)t

2t

)
= Ω

((
7
8

)t

t−2

)
.

In a similar fashion, it follows that

C(Gt) =

∑t
k=0 n0

(
t
k

)
O

((
3
4

)k
t2

)

n02t
= O

((
7
8

)t

t2

)
. ut

3 Spectral Properties of the ILT Model

Social networks often organize into separate clusters in which the intra-cluster links are significantly higher
than the number of inter-cluster links. In particular, social networks contain communities (characteristic of
social organization), where tightly knit groups correspond to the clusters [17]. As a result, social networks
possess bad expansion properties realized by small gaps between their first and second eigenvalues [15].
In this section, we find that the ILT model has such bad expansion properties for both its normalized
Laplacian and adjacency matrices.

3.1 The Spectral Gap of the Normalized Laplacian

For regular graphs, the eigenvalues of the adjacency matrix are related to several important graph proper-
ties, such as in the expander mixing lemma. The normalized Laplacian of a graph, introduced by Chung [8],
relates to important graph properties even in the case where the underlying graph is not regular (as is the
case in the ILT model). Let A denote the adjacency matrix and D denote the diagonal adjacency matrix
of a graph G. Then the normalized Laplacian of G is

L = I −D−1/2AD−1/2.

Let 0 = λ0 ≤ λ1 ≤ λn−1 ≤ 2 denote the eigenvalues of L. The spectral gap of the normalized Laplacian is

λ = max{|λ1 − 1|, |λn−1 − 1|}.

Chung, Lu, and Vu [11] observe that, for random power law graphs with some parameters (effectively in
the case that dmin À log2 n), that λ ≤ (1 + o(1)) 4√

d
, where d is the average degree.

For the graphs Gt studied here, we observe that the spectra behaves quite differently and, in fact,
the spectral gap has a constant order. The following theorem suggests a significant spectral difference
between graphs generated by the ILT model and random graphs. Define λ(t) to be the spectral gap of
the normalized Laplacian of Gt.

Theorem 4. For t ≥ 1, λ(t) > 1
2 .

Theorem 4 represents a drastic departure from the good expansion found in random graphs, where
λ = o(1) [8, 11], and from the preferential attachment model [18]. We use the expander mixing lemma
for the normalized Laplacian (see [8]). For sets of vertices X and Y we use the notation vol(X) for the
volume of the subgraph induced by X, and e(X, Y ) for the number of edges with one end in each of X
and Y.

Lemma 6. For all sets X ⊆ G,

∣∣∣∣e(X, X)− (vol(X))2

vol(G)

∣∣∣∣ ≤ λ
vol(X)vol(X̄)

vol(G)
.



Proof of Theorem 4. We observe that Gt contains an independent set (that is, a set of vertices with no
edges) with volume vol(Gt−1)+nt−1. Let X denote this set, that is, the new nodes added at time t. Then
by (3) it follows that

vol(X̄) = vol(Gt)− vol(X) = 2vol(Gt−1) + nt−1.

Since X is independent, Lemma 6 implies that

λ(t) ≥ vol(X)
vol(X̄)

=
vol(Gt−1) + nt−1

2vol(Gt−1) + nt−1
>

1
2
. ut

If G0 has bad expansion properties, and has λ1 < 1/2 (and thus, λ > 1/2) then, in fact, this trend of
bad expansion continues as shown by the following theorem.

Theorem 5. Suppose G0 has at least two nodes, and for t > 0 let λ1(t) be the second eigenvalue of Gt.
Then we have that

λ1(t) < λ1(0).

Note that Theorem 5 implies that λ1(1) < λ1(0) and this implies that the sequence {λ1(t) : t ≥ 0} is
strictly decreasing. This follows since Gt is constructed from Gt−1 in the same manner as G1 is constructed
from G0. If G0 is K1, then there is no second eigenvalue, but G1 is K2. Hence, in this case, the theorem
implies that {λ1(t) : t ≥ 1} is strictly decreasing.

Before we proceed with the proof of Theorem 5, we begin by stating some notation and a lemma.
For a given node u ∈ V (Gt), we let ũ ∈ V (G0) denote the node in G0 that u is a descendant of. Given
uv ∈ E(G0), we define

Auv(t) = {xy ∈ E(Gt) : x̃ = u, ỹ = v},
and for v ∈ E(G0), we set

Av(t) = {xy ∈ E(Gt) : x̃ = ỹ = v}.
We use the following lemma, for which the proof of items (1) and (2) follow from Lemma 1. The final

item contains a standard form of the Raleigh quotient characterization of the second eigenvalue; see [8].

Lemma 7. 1. For uv ∈ E(G0),
|Auv(t)| = 3t.

2. For v ∈ V (G0),
|Av(t)| = 3t − 2t.

3. Define

d̄ =

∑
v∈V (Gt)

f(v) degt(v)

vol(Gt)
.

Then

λ1(t) = inf
f :V (Gt)→R,

f 6=0

∑
uv∈E(Gt)

(f(u)− f(v))2

∑
v

f2(v) degt(v)− d̄2vol(Gt)
. (5)

Note that in item (3), d̄ is a function of f.
Proof of Theorem 5. Let g : V (G0) → R be the harmonic eigenvector for λ1(0) so that

∑

v∈V (G0)

g(v) deg0(v) = 0,

and

λ1(0) =

∑
uv∈E(G0)

(g(u)− g(v))2

∑
v∈V (G0)

g2(v) deg0(v)
.



Furthermore, we choose g scaled so that
∑

v∈V (G0) g2(v) deg0(v) = 1. This is the standard version of the
Raleigh quotient for the normalized Laplacian from [8], so such a g exists so long as G0 has at least two
eigenvalues, which it does by our assumption that G0 � K1. Our strategy in proving the theorem is to
show that lifting g to G1 provides an effective bound on the second eigenvalue of G1 using the form of
the Raleigh quotient given in (5).

Define f : Gt → R by f(x) = g(x̃). Then note that

∑

xy∈E(Gt)

(f(x)− f(y))2 =
∑

xy∈E(Gt),
x̃=ỹ

(f(x)− f(y))2 +
∑

xy∈E(Gt)
x̃6=ỹ

(f(x)− f(y))2

=
∑

uv∈E(G0)

∑

xy∈Auv

(g(u)− g(v))2

= 3t
∑

uv∈E(G0)

(g(u)− g(v))2.

By Lemma 7 (1) and (2) it follows that

∑

x∈V (Gt)

f2(x) degt(x) =
∑

x∈V (Gt)

∑

xy∈E(Gt)

f2(x) =
∑

u∈V (G0)

∑

xy∈E(Gt),
x̃=u

g2(u)

=
∑

u∈V (G0)

g2(u)


 ∑

vu∈E(G0)

∑

xy∈Auv

1 + 2|Au|



= 3t
∑

u∈V (G0)

g2(u) deg0(u) + 2(3t − 2t)
∑

u∈V (G0)

g2(u)

= 3t + 2(3t − 2t)
∑

u∈G0

g2(u).

By Lemma 1 and proceeding as above, noting that
∑

v∈V (G0) g(v) deg0(v) = 0, we have that

d̄2vol(Gt) =

(
∑

x∈V (Gt)

f(x) degt(x)

)2

vol(Gt)

=

(
2(3t − 2t)

∑
u∈V (G0)

g(u)

)2

vol(Gt)

=

4 · 32t
(
1− (

2
3

)t
)2

(
∑

u∈V (G0)

g(u)

)2

3t
(
vol(G0) + 2n0

(
1− (

2
3

)t
))

≤
4 · 3t

(
1− (

2
3

)t
)2 ∑

u∈V (G0)

g2(u)

D̄ + 2
(
1− (

2
3

)t
) ,

where D̄ is the average degree of G0, and the last inequality follows from the Cauchy-Schwarz inequality.



By (5) we have that

λ1(t) ≤

∑
xy∈E(Gt)

(f(x)− f(y))2

∑
x∈V (Gt)

f2(x) degt(x) + d̄2vol(Gt)

≤
3t

∑
uv∈E(G0)

(g(u)− g(v))2

3t + 2 · 3t
(
1− (

2
3

)t
)(∑

u∈V (G0) g2(u)
)
−

4·3t
(
1−( 2

3)
t
)2 ∑

u∈V (G0)

g2(u)

D̄+2
(
1−( 2

3)
t
)

=
λ1(0)

1 + 2
(
1− (

2
3

)t
)(

∑
u∈V (G0)

g2(u)

)(
1− 2

(
1−( 2

3)
t
)

D̄+2
(
1−( 2

3)
t
)
)

< λ1(0),

where the strict inequality follows from the fact that D̄ ≥ 1 since G0 is connected and G0 � K1. ut

3.2 The Spectral Gap of the Adjacency Matrix

Let ρ0(t) ≥ |ρ1(t)| ≥ . . . denote the eigenvalues of the adjacency matrix Gt. As in the Laplacian case, we
can show that there is a small spectral gap of the adjacency matrix. If A is the adjacency matrix of Gt,
then the adjacency matrix of Gt+1 is

M =
(

A A + I
A + I 0

)
,

where is I is the identity matrix of order nt. We note the following recurrence for the eigenvalues of the
adjacency matrix of Gt, whose proof is omitted.

Theorem 6. If ρ is an eigenvalue of the adjacency matrix of Gt, then

ρ±
√

ρ2 + 4(ρ + 1)2

2
,

are eigenvalues of the adjacency matrix of Gt+1.

Indeed, one can check that the eigenvectors of Gt can be written in terms of the eigenvalues of Gt−1. We
prove the following theorem.

Theorem 7. Let ρ0(t) ≥ |ρ1(t)| ≥ · · · ≥ |ρn(t)| denote the eigenvalues of the adjacency matrix of Gt.
Then

ρ0(t)
|ρ1(t)| = Θ(1).

That is, ρ0(t) ≤ c|ρ1(t)| for some constant c. Theorem 7 is in contrast to fact that in G(n, p) random
graphs, |ρ0| = o(ρ1).
Proof of Theorem 7. Without loss of generality, we assume that G0 � K1; otherwise, G1 is K2, and we
may start from there. Thus, in particular, we can assume ρ0(0) ≥ 1.

We first observe that by Theorem 6

ρ0(t) ≥
(

1 +
√

5
2

)t

ρ0(0). (6)



By Theorem 6 and by taking a branch of descendants from the largest eigenvalue it follows that

|ρ1(t)| ≥ 2(
√

5− 1)
(1 +

√
5)2

(
1 +

√
5

2

)t

ρ0(0).

Hence, to prove the theorem, it suffices to show that

ρ0(t) ≤ c

(
1 +

√
5

2

)t

ρ0(0).

Observe that, also by Theorem 6 and taking the largest branch of descendants from the largest eigenvalues,

ρ0(t) = ρ0(0)
t−1∏

i=0




1 +
√

5 + 8
ρ0(i) + 4

ρ2
0(i)

2


 ≤ ρ0(0)

t−1∏

i=0




1 +
√

5 + 6
ρ0(i)

2


 .

Thus,

2tρ0(t)
(1 +

√
5)t

≤ ρ0(0)
t−1∏

i=0

1 +
√

5 + 6
ρ0(i)

1 +
√

5

≤ ρ0(0)
t−1∏

i=0

(
1 +

√
5

1 +
√

5
6

5ρ0(i)

)

≤ ρ0(0) exp

(
6
√

5
5(1 +

√
5)

t−1∑

i=0

ρ0(i)−1

)

≤ ρ0(0) exp

(
6
√

5
5(1 +

√
5)ρ0(0)

∞∑

i=0

(
2

1 +
√

5

)−i
)

= ρ0(0)c.

In all we have proved that for constants c and d that

c

(
1 +

√
5

2

)t

ρ0(0) ≥ ρ0(t) ≥ |ρ1(t)| ≥ d

(
1 +

√
5

2

)t

ρ0(t). ut

4 Conclusion and further work

We introduced the ILT model for on-line social and other complex networks, where the network is cloned
at each time-step. We proved that the ILT model generates graphs with a densification power law, in
many cases decreasing average distance (and in all cases, the diameter is bounded above by a constant
independent of time), have higher clustering than random graphs with the same average degree, and have
smaller spectral gaps for both their normalized Laplacian and adjacency matrices than in random graphs.

Much more can be said about the ILT model than space permits here; for example, many graph
properties at time t are strongly related to properties from time 0. For example, the cop and domination
numbers of the graphs Gt equal those of G0 (see [5] for definitions of these parameters). In addition, the
automorphism group (endomorphism monoid) of G0 embeds as a subgroup (submonoid) in the automor-
phism group (endomorphism monoid) of Gt. A discussion of these and other properties of the ILT model
will appear in the full version of this paper.

In the duplication and copying models and in the model [14] of social networks, transitivity is modelled
so that neighbours are copied with some fixed probability. The ILT model may be randomized, so that
x′ clones x with a fixed probability. We will study this randomized ILT model in future work. As we



noted after the statement of Lemma 4 the ILT model does not generate graphs with a power law degree
distribution. An interesting problem that we will address in the full version of this paper is to design and
analyze a randomized version of the ILT model satisfying the properties displayed in the deterministic
ILT model (and make them tuneable; for example, the densification power law exponent should vary with
the choice of parameters) as well as generating power law graphs. Such a randomized ILT model should
with high probability generate power law graphs with topological properties similar to graphs from the
deterministic ILT model.
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