
Search Algorithms for Unstructured Peer-to-Peer
Networks

Reza Dorrigiv
School of Computer Science

University of Waterloo
Waterloo, ON, N2L 3G1, Canada

Email: rdorrigiv@uwaterloo.ca

Alejandro López-Ortiz
School of Computer Science

University of Waterloo
Waterloo, ON, N2L 3G1, Canada

Email: alopez-o@uwaterloo.ca

Paweł Prałat
Department of Mathematics and Statistics

Dalhousie University
Halifax, NS, B3H 3J5, Canada
Email: pralat@mathstat.dal.ca

Abstract—We study the performance of several search al-
gorithms on unstructured peer-to-peer networks, both using
classic search algorithms such as flooding and random walk,
as well as a new hybrid algorithm proposed in this paper. This
hybrid algorithm first uses flooding to find sufficient number
of nodes and then starts random walks from these nodes. We
compare the performance of the search algorithms on several
graphs corresponding to common topologies proposed for peer-
to-peer networks. In particular, we consider binomial random
graphs, regular random graphs, power-law graphs, and clustered
topologies. Our experiments show that for binomial random
graphs and regular random graphs all algorithms have similar
performance. For power-law graphs, flooding is effective for small
number of messages, but for large number of messages our hybrid
algorithm outperforms it. Flooding is ineffective for clustered
topologies in which random walk is the best algorithm. For these
topologies, our hybrid algorithm provides a compromise between
flooding and random walk. We also compare the proposed hybrid
algorithm with the k-walker algorithm on power-law and clus-
tered topologies. Our experiments show that while they have close
performance on clustered topologies, the hybrid algorithm has
much better performance on power-law graphs. We theoretically
prove that flooding is effective for regular random graphs which
is consistent with our experimental results.

I. INTRODUCTION

Peer-to-peer networks are widely used for file sharing
purposes. This type of usage tends to favour resilient, de-
centralized architectures over centralized solutions. However
this comes at a penalty in ease of searching. At first, peer-
to-peer systems addressed this shortcoming by incorporating
a flooding mechanism for resource discovery. A node in the
peer-to-peer network broadcasts a query message to its neigh-
bours. The neighbours in turn are responsible for reporting any
matches as well as forwarding the message to its neighbours,
if necessary. This mechanism has been proven effective in
practice for finding items which are prevalent across the
peer-to-peer network, but otherwise ineffective and resource
consuming.

As a consequence numerous alternatives search techniques
have been proposed, ranging from variants in flooding al-
gorithms, to structured distributed solutions to centralized
indices [3]. Each of these techniques has its own merits and
drawbacks.

In this paper we consider searching for an object in
an unstructured decentralized peer-to-peer networks such as

Gnutella or FastTrack. It is known that in this context flooding
excels in the search of popular items which are widely
available. On the other hand, traditional time-to-live (TTL)
techniques fail to locate items that are not available locally.
Gkantsidis et al. (INFOCOM’04) [4] studied random walks
as an alternative to TTL-based flood techniques. They showed
that certain types of random walks can outperform flooding
techniques provided that certain modifications in the topology
are introduced as part of the search. This work was further
extended by the same authors [5] in INFOCOM’05. In that
work, they consider the impact of a random walk followed
by shallow flooding and observe that if we assume that edge
criticality is known then the graph can be labeled in such a
way as to obtain an effective search technique. A similar study
is by Lv et al. [8] where they consider k random walkers in
random, power-law, grid and Gnutella graphs.

In this paper we systematically study the effect of random
walk versus flooding in a variety of settings and topologies.
We consider, in particular, binomial random graphs, d-regular
graphs, power-law graphs and clustered topologies. We follow
the methodology of Gkantsidis et al. [4], [5] in which a
maximum number of messages is set and then we determine
what percentage of the nodes in the peer-to-peer graph are
visited using this number of messages. In a sense this is a
measure of per-message effectiveness of the search method. As
well, we consider the case in which changes to the topology
are not feasible due to the unstructured nature of the peer-to-
peer topology.

We proceed to describe the search algorithms which are of
interest in our work.

Flooding. Flooding is one of the simplest search strategies and
yet one of the most commonly used in peer-to-peer networks.
For instance, it is the search method employed by the Gnutella
network. The search proceeds as follows: the origin of the
search sends “discovery” messages to all its neighbours, which
in turn propagate the message to their own neighbours (except
the neighbour from which they have received the message) and
so on.

Flooding as described above is unrestricted in the sense that
there is no constraint on the number of messages generated
by the search request. A simple way to limit the range of



the flooding is to introduce the so-called time-to-live (TTL)
parameter. More superficially, the origin of the search sends
a discovery message to all its neighbours, along with the
parameter TTL. The recipients decrease TTL by one and
if TTL is still positive they propagate the message to their
own neighbourhoods (except the neighbour from which they
have received the message), and so fourth. In this way, it is
guaranteed that the search is restricted within a ball of radius
TTL from the origin of the search.

The popularity of flooding is mainly due to its simplicity;
it is easy to implement and easy to support. Moreover, in its
unrestricted version (or when TTL is set to a sufficiently large
value) it will always succeed in the search. The most striking
drawback of flooding is that it suffers from rather prohibitive
message complexity.

Normalized Flooding Normalized flooding is the same as
flooding, except that every node sends the message only to a
subset of its neighbours. Let δ be the minimum degree (number
of neighbours) of a node in the network. If a node has more
than δ neighbours, then it sends the message only to δ nodes
in its neighbourhood that are selected uniformly at random.

Simulation of Random Walks. Random walks have emerged
in the area of peer-to-peer networks as alternatives to flooding.
The idea is that instead of forwarding a request to all the
neighbours, the recipient sends it to a random neighbour. The
appealing property of the random walk method is the small
message complexity, which means the algorithm scales well
with the size of the network. In addition, random walks have
been studied extensively from a theoretical point of view.
Naturally, we are interested in the time (or, equivalently, on
the number of hops) the random walk needs to locate the host
sought. An efficient random walk will have the property that
this time is small.

There are variants of the random walk method which aim
to reduce the search time. One variant involves the use of k
independent random walks, all simulated in parallel from the
origin. The search is successful once the file is located by any
one of the individual random walks. We call this variant the
k-walkers algorithm. A different variant introduces small local
flooding into the random walk. More precisely, every node in
the random walk initiates a (small) flooding, namely flooding
with a small TTL value. This hybrid algorithm was proposed
and studied in [5].

Local flooding with k independent random walks. In
this paper we propose and study a new hybrid algorithm, as
a compromise between flooding and random walks. The idea
is to first perform a (local) flooding starting from the origin
of the search; the flooding continues until exactly k new outer
nodes have been discovered, for some predefined value of k.
In the case where one of these nodes has the file, the search
is successful and the origin is notified. Otherwise, each of the
k nodes initiates an independent random walk.

What is the motivation behind such a hybrid algorithm?
Clearly, we are trying to exploit the positive characteristics of
two widely different algorithms, namely flooding and random
walks. If the file is located close to the origin, the local
flooding would be sufficient to locate it fast, and with few
messages exchanged. If the file is located away from the
network, it is expected that it will be located by one of the
random walks, but more importantly, since the flooding occurs
only locally, the message complexity is small.

There exist situations in which one might anticipate that the
two hybrid algorithms described above will not necessarily
have similar performance. For instance consider a network
which consists by several dense clusters (e.g., cliques) which
are interconnected by means of a very sparse network (e.g.,
a tree that spans the representatives of each cluster). If we
initiate a search from a certain cluster, assuming that the file
is located in a different cluster, using random walks with
local flooding, it may happen that the random walk remains
“trapped” within the cluster of the origin of the search. On the
other side, one would hope that local flooding combined with
independent random walks may resolve this problem, since the
flooding could discover vertices outside the origin’s cluster at
an earlier time.

II. THEORETICAL RESULTS

In this section we prove that in d-regular graphs, flooding
finds new vertices most of the time. Similar behaviour can be
proved for Gn,d/n. Therefore we expect flooding to have a
good performance on these topologies. Let Ni(u) denote the
set of vertices at distance at most i from u. Note that, in the
early stages of the flooding process, the graph revealed from
vertex u tend to be a tree, that is, the number ni of elements
in Ni(u) is approximately ni−1 +(d−1)(ni−1−ni−2). Thus,
after i ∼ 3

4 logd−1 n steps, we expect Ni(u) to contain about
n3/4 vertices.

Let fi denote the total number of queries for flooding with
TTL = i, that is, fi = d

∑i−1
j=0(d − 1)j = d((d−1)i−1)

d−2 , and
i0 = 1

2 logd−1 n. An event is said to hold with high probability
(w.h.p.), if it holds with probability 1− o(1) as n →∞.

Lemma 1: Let ω(n) be any function of n such that ω(n) →
∞ as n → ∞. For i ≤ i0 − ω(n) w.h.p. the cardinality ni

of Ni(u) equals fi. Moreover, for i ≤ i0 + ω(n) w.h.p. ni =
fi −O

(
ω(n)(d− 1)3(i−i0)+ω(n)

)
.

Proof: Note that the expected number of “cross edges”
that generate a new cycle(s) at step i+1 is equal to O(n2

i /n) =
O(f2

i /n) = O((d− 1)2i/n).
Consider i1 = bi0 − ω(n)c = b 1

2 logd−1 n − ω(n)c. The
expected number of “cross edges” found up to time-step i1 is
equal to

∑i1−1
j=0 O

(
(d− 1)2j/n

)
= O

(
(d− 1)2i1/n

)
= o(1) .

Thus, from Markov inequality, until step i1 w.h.p. there are
no “cross edges”, hence w.h.p. Ni1(u) is a tree and ni = fi

for i ≤ i1.
Also, the expected number of “cross edges” added between

step i1 +1 and step i, i ≤ bi0 +ω(n)c = b 1
2 logd−1 n+ω(n)c

is equal to
∑i−1

j=i1
O

(
(d − 1)2j/n

)
= O

(
(d − 1)2i/n

)
=



O
(
(d−1)2(i−i0)

)
. Thus, again from Markov inequality, w.h.p.

the total number of “cross edges” at time i is at most
O

(
ω(n)(d − 1)2(i−i0)

)
. Since one “cross edge” added at

this time interval can destroy tree branch of size O
(
(d −

1)i−i0+ω(n)
)
, the following equality holds w.h.p. ni = fi −

O
(
ω(n)(d−1)2(i−i0)

)
·O

(
(d−1)i−i0+ω(n)

)
, which completes

the proof of the theorem.
The next theorem is a simple consequence of the Lemma 1.
Theorem 1: Let ω̂(n) be any function such that ω̂(n) →∞

as n → ∞. For i ≤ î = 3
4 logd−1 n − ω̂(n) w.h.p. ni

fi
=

1− o(1) .
Proof: Let ω(n) = o(ω̂(n)). From Lemma 1, for any

i ≤ î

ni

fi
= 1−O

(
ω(n)(d− 1)2i−3i0+ω(n)

)
= 1−O

(
ω(n)(d− 1)−2ω̂(n)+ω(n)

)
= 1−O

(
d− 1)−2(1+o(1))ω̂(n)

)
= 1− o(1)

and the assertion follows.

III. EXPERIMENTAL EVALUATION

In this section we present the results of the experimental
evaluation of our algorithms. Subsection III-A provides details
concerning the generation of inputs and the performance
metrics used. Subsection III-B is a discussion of the graph
topologies we are studying. Finally in Subsection III-C we
present the results we obtained through experiments along
with a discussion of their significance. We implemented the
algorithms in C/C++, and run them in a cluster of clusters (see
Section V for more details). The program code can be found
at the following address: “http://www.mathstat.dal.ca/˜pralat/”.

A. Methodology

For our experiments we generate 80 random graphs (for
each topology) of 100,000 nodes each, and run the algorithms
on each graph; this ensures that we do not, accidentally, choose
an outlier graph. For each topology and each algorithm, we
consider several aggregate functions (mean, median, standard
deviation) on the results of running that algorithm on the
corresponding 80 graphs.

On a similar note, for each of 80 input graphs, we consider
every vertex as a possible origin for a search, and we evaluate
the average performance of the algorithms over all origins (and
all input graphs). This is particularly important for clustered
topologies and power-law graphs in which such outlier vertices
are not infrequent.

Naturally, we want to evaluate the algorithms on input
graphs which are connected. However, the popular methods
for randomly generating graphs (see Subsection III-B) do
not necessarily produce connected graphs. We remedy this
situation by the following process: First, we make every
isolated vertex adjacent to a vertex in the graph, by adding
an edge at random. Then, we find the connected components

of the new graph (using BFS) and add a random edge between
components. This guarantees the final graph is connected.

For a fair comparison of the various search algorithms, we
require that they all use the same number of messages. For
our experiments we look at values of 55, 56, and 105 for some
topologies and 104 and 105 for the others.

The major performance metric we use is the vector V =
(v0, v1, . . . , vk), where vi denotes the average number of
nodes visited exactly i times, over all searches. Clearly, the
most significant coordinate of V is v0 since the number of
distinct nodes visited during the execution of a search algo-
rithm is n−v0. An additional interpretation of the significance
of v0 is the following: Suppose c copies of a file we seek
are placed over the network, uniformly at random. Then we
expect n−v0

n c copies of this file to be discovered by the search
algorithm. The remaining coordinates of V capture repetitive
visits of nodes in the graph. Clearly, a good search algorithm
would exhibit very small values of vi’s , especially for large
values of i.

B. Topologies

We focus on topologies which have been studied extensively
in the past, and in particular for topologies for which there is
good empirical evidence that they model, at least to a satisfac-
tory level, the structure of modern communication networks.
Among the topologies we study, the binomial random graph
and the d-regular random graph models are models of mostly
theoretical interest whereas power-law graphs and clustered
topologies come closer to capturing the behaviour of realistic
networks.

Binomial random graphs. Given a real number p, 0 ≤ p ≤ 1
and a collection of vertices V , a random binomial graph is
generated by including, for every pair of vertices vi, vj ∈ V ,
an edge (vi, vj) with probability p; the random experiment
is repeated independently for all

(
n
2

)
pairs of vertices. We

show the corresponding binomial random graph by Gn,p. This
model has been studied extensively (see [6] for the definitive
treatment of this topic). For instance, well-known theorems
concerning this class of graphs characterize the threshold
at which a giant component emerges or the random graph
becomes connected.

For our evaluation, we are looking at graphs with expected
degree 5 and 10.

d-regular random graphs. A d-regular graph is defined as
a graph in which every vertex has degree d; a random d-
regular graph is a graph chosen uniformly at random from the
space of all d-regular graphs on n vertices. Random d-regular
graphs have certain appealing properties such as low diameter
and good connectivity and, as in the case of binomial random
graphs, have also been studied extensively from a theoretical
point of view.

Generating a random d-regular graph is a subtle issue. One
approach is the so called configurational model which provides
a framework for creating a random graph with a certain degree



sequence (see e.g., [12]). This approach is relatively simple,
but has the drawback that it may yield a multigraph (i.e.,
multiedges and self-loops may be present) instead of a simple
graph. Instead, we choose to implement the following d-
process: we begin with n isolated vertices, to which edges
are added randomly one by one so that the maximum degree
of the induced graph is always at most d. It is known [11]
that with probability tending to 1 as n →∞, the result of this
process is a d-regular graph (except for one vertex of degree
d− 1 when dn is odd).

For our evaluation, we are looking at 5-regular and 10-
regular graphs.

Power-law graphs. In recent years substantial evidence has
been presented that networks such as the Web graph exhibit a
power-law with respect to the degrees of their nodes. More
precisely, Broder et al. [2] noticed that the distribution of
degrees in the Web graph follows a power-law: the fraction
of vertices with degree d is proportional to d−γ , where γ
is a constant independent of the size of the network (more
precisely, γ ∼ 2.1 for in-degrees, γ ∼ 2.7 for out-degrees).
As a reminder, the web graph is defined as the graph in
which every node corresponds to a static web page and for
every hyperlink between two pages there exists a directed edge
incident to the corresponding nodes.

There are several known models for the web graph (see for
example the general survey [1]). We chose to implement a
recently developed model, known as the Protean Model. Our
choice is motivated by certain very attractive properties of
such graphs: in particular, it has been shown (see [9]) that
the protean graph has one giant component which contains a
positive fraction of all vertices and is of diameter Θ(log n).
This indicates that the protean graph captures the structure
of small-world networks (of which real-life examples are web
graph and other natural networks). Note also that the definition
of protean process allows us to study the recovery time; an
interesting and very important property which does not have
its counterpart for the other models.

The formal definition of the protean graph Pn(d, η) is
somewhat technical (we refer the reader to [7] for more details;
see also [10] for extended version of standard protean graph).
Nevertheless the idea behind its definition is simple. This
model takes into account an additional natural parameter of
a vertex, its age, and predicts how it influences the degree
of a vertex. We start with any graph G with vertex set [n],
and at each time-step we pick randomly one of the vertices
v to be renewed. More precisely, we delete from G all edges
incident to v; this corresponds to a removal of a random node
from the network. Then we generate d new edges from v to
existing vertices chosen randomly with weighted probabilities
(‘old’ vertices have bigger probability of being chosen). Note
that vertex v can be viewed as a new node which establishes
connection with some nodes in the network. When all vertices
are renewed at least once, the random graph is a protean graph
Pn(d, η).

In [7] it is shown that the degrees of the Pn(d, η) are

TABLE I
EXPERIMENTAL RESULTS FOR Gn,p WITH n = 100, 000 AND p = 5/n

A B Mean Perc. of best Minimum Maximum σ
55 F 3072.177 100.000 3071.768 3072.548 0.137
55 NF 3066.836 99.826 3066.157 3067.383 0.238
55 RW 3034.931 98.788 3032.454 3036.592 0.718
55 H1 3035.026 98.791 3032.569 3036.718 0.728
55 H2 3035.282 98.799 3032.854 3036.947 0.697
55 H3 3046.035 99.149 3044.455 3047.162 0.490
56 F 14215.424 99.811 14209.195 14222.816 2.854
56 NF 14242.398 100.000 14237.605 14246.279 1.932
56 RW 14120.694 99.145 14107.459 14129.181 3.885
56 H1 14120.759 99.146 14107.630 14129.214 3.875
56 H2 14121.114 99.148 14107.901 14129.619 3.854
56 H3 14122.017 99.155 14108.917 14130.281 3.774
n F 58867.496 99.231 58784.255 58936.885 30.072
n NF 59323.840 100.000 59248.742 59383.612 23.729
n RW 59297.404 99.955 59218.167 59351.545 25.516
n H1 59297.513 99.956 59217.602 59351.357 25.495
n H2 59297.580 99.956 59218.256 59351.393 25.468
n H3 59298.196 99.957 59217.733 59352.119 25.401

distributed according to a power-law. More precisely, the
number of vertices of degree k decreases roughly as k−1−1/η .

Clustered Topologies. These graphs are intended to model
realistic networks which consist of relatively isolated clusters
of nodes, connected through a backbone network. In particular,
for our experiments we consider three models for clusters:
• Kl, i.e. clique of size l
• Random graph Gl,1/2

• Random graph Gl,1/5

Every cluster has a representative; we then connect the repre-
sentatives by means of a 3-regular random graph. We consider
clusters of size l = 100.

C. Experiments

Tables I-XI show the Mean/Minimum/Maximum of the
average number of distinct nodes that are discovered by each
algorithm on the 80 graphs produced according to different
topologies. In each table, the first column (labeled A) shows
the number of messages and the second column (labeled B)
denotes the algorithm. The algorithms are denoted as follows:
flooding by F , normalized flooding by NF , random walk
by RW , and hybrid algorithm with 10i random walkers by
Hi. For each topology and a fixed number of messages the
row that corresponds to the algorithm with maximum Mean is
highlighted. Also the percentage of Mean of other algorithms
to this algorithm’s Mean is shown. The other columns show
the Mean, Minimum, Maximum, and standard deviation.

a) Analysis of results for binomial random graphs:
Tables I and II show the results for binomial random graphs.
We observe that in this case all algorithms have similar
performance. Also as the number of messages increases, the
performance of flooding decreases; it is the best algorithm for
55 messages, but not for N messages. We note that RW , H1,
H2, and H3 behave almost the same.

b) Analysis of results for d-regular random graphs:
Tables III and IV show the results for d-regular random graphs.
Again the performances are very close. The good performance
of flooding on these graphs is consistent with theoretical



TABLE II
EXPERIMENTAL RESULTS FOR Gn,p WITH n = 100, 000 AND p = 10/n

A B Mean Perc. of best Minimum Maximum σ
104 F 9468.841 99.968 9467.126 9470.258 0.618
104 NF 9471.838 100.000 9471.162 9472.433 0.282
104 RW 9470.951 99.991 9470.313 9471.552 0.263
104 H1 9470.944 99.991 9470.304 9471.557 0.275
104 H2 9470.978 99.991 9470.453 9471.598 0.261
104 H3 9471.172 99.993 9470.518 9471.796 0.298
n F 61209.108 99.707 61179.880 61234.376 12.791
n NF 61386.856 99.997 61365.743 61405.355 9.185
n RW 61388.751 100.000 61367.928 61407.741 9.038
n H1 61388.728 100.000 61367.282 61408.125 9.062
n H2 61388.819 100.000 61367.340 61407.824 9.110
n H3 61388.855 100.000 61367.372 61408.264 9.003

TABLE III
EXPERIMENTAL RESULTS FOR 5-REGULAR GRAPHS WITH n = 100, 000

A B Mean Perc. of best Minimum Maximum σ
55 F 3077.056 100.000 3076.313 3077.660 0.266
55 NF 3077.056 100.000 3076.313 3077.660 0.266
55 RW 3076.770 99.991 3076.686 3076.867 0.038
55 H1 3076.768 99.991 3076.676 3076.839 0.034
55 H2 3076.776 99.991 3076.682 3076.856 0.034
55 H3 3076.974 99.997 3076.426 3077.435 0.204
56 F 14467.513 100.000 14462.400 14471.077 1.719
56 NF 14467.513 100.000 14462.400 14471.077 1.719
56 RW 14465.866 99.989 14465.449 14466.116 0.132
56 H1 14465.865 99.989 14107.630 14129.214 3.875
56 H2 14465.888 99.989 14465.457 14466.261 0.152
56 H3 14466.101 99.990 14465.279 14466.774 0.304
n F 63218.463 100.000 63198.744 63234.677 7.315
n NF 63218.463 100.000 63198.744 63234.677 7.315
n RW 63213.218 99.992 63,212.362 63,214.303 0.413
n H1 63213.175 99.992 63212.390 63213.939 0.374
n H2 63213.080 99.991 63211.912 63213.840 0.440
n H3 63213.291 99.992 63212.235 63214.413 0.487

TABLE IV
EXPERIMENTAL RESULTS FOR 10-REGULAR GRAPHS WITH n = 100, 000

A B Mean Perc. of best Minimum Maximum σ
104 F 9517.860 100.000 9516.843 9519.056 0.517
104 NF 9516.986 99.991 9516.675 9517.306 0.151
104 RW 9516.496 99.986 9516.257 9516.649 0.075
104 H1 9516.515 99.986 9516.329 9516.669 0.075
104 H2 9516.513 99.986 9516.314 9516.685 0.081
104 H3 9516.674 99.988 9516.395 9516.981 0.117
n F 63219.926 100.000 63212.771 63228.066 3.277
n NF 63215.058 99.992 63213.303 63216.856 0.706
n RW 63213.002 99.989 63212.023 63213.810 0.431
n H1 63213.065 99.989 63212.228 63213.905 0.364
n H2 63213.050 99.989 63211.844 63213.721 0.347
n H3 63213.106 99.989 63211.802 63213.884 0.419

results of Section II. We observe that the standard deviations
of F and NF is worse (larger) than other algorithms.

c) Analysis of results for power-law graphs with λ =
2.1: Tables V and VI show the results for power-law graphs
with λ = 2.1. For small number of messages, flooding is the
best algorithm according to Mean. As the number of messages
increases, the efficiency of flooding decreases. For example it
is the worst algorithm when we use N messages. The standard
deviation of flooding is much larger than other algorithms.

d) Analysis of results for power-law graphs with λ = 2.7:
Tables VII and VIII show the results for power-law graphs with
λ = 2.7. For average degree 5, NF is the best algorithm and
for average degree 10, H3 is the best algorithm. Flooding is
the worst algorithm for large number of messages, that is, N
messages. Flooding has the largest standard deviation.

e) Analysis of results for clustered graphs: Tables IX, X,
and XI show the results for clustered graphs. In general, all

TABLE V
EXPERIMENTAL RESULTS FOR POWER-LAW GRAPHS WITH λ = 2.1 AND

AVERAGE DEGREE 5

A B Mean Perc. of best Minimum Maximum σ
55 F 2987.723 100.000 2950.868 3015.776 14.893
55 NF 2727.960 91.306 3076.313 3077.660 0.266
55 RW 2571.427 86.066 2545.339 2606.159 15.165
55 H1 2574.199 86.159 2546.333 2611.409 16.086
55 H2 2585.539 86.539 2558.693 2621.724 15.446
55 H3 2724.836 91.201 2709.105 2748.038 8.242
56 F 12851.139 100.000 12311.150 13398.720 291.761
56 NF 11930.450 92.836 14462.400 14471.077 1.719
56 RW 11284.211 87.807 11183.438 11400.340 51.740
56 H1 11289.183 87.846 11184.395 11404.517 54.289
56 H2 11303.555 87.958 11198.152 11418.896 54.056
56 H3 11414.221 88.819 11317.776 11519.615 47.704
n F 39074.911 76.818 35153.269 42861.851 1968.823
n NF 50866.582 100.000 50677.829 51087.124 98.176
n RW 48771.353 95.881 48653.596 48936.619 60.500
n H1 48774.005 95.886 48658.002 48937.930 60.433
n H2 48789.317 95.916 48665.956 48950.913 61.582
n H3 48826.519 95.989 48703.350 48974.728 60.341

TABLE VI
EXPERIMENTAL RESULTS FOR POWER-LAW GRAPHS WITH λ = 2.1 AND

AVERAGE DEGREE 10

A B Mean Perc. of best Minimum Maximum σ
104 F 9297.479 100.000 8744.323 9557.168 141.577
104 NF 7842.801 84.354 7691.151 8054.712 67.750
104 RW 7786.536 83.749 7638.957 7992.578 65.924
104 H1 7786.141 83.745 7638.686 7992.406 65.904
104 H2 7793.210 83.821 7647.361 7997.023 65.140
104 H3 7891.596 84.879 7763.210 8073.036 57.312
n F 48126.982 95.419 45706.950 50530.164 958.234
n NF 50295.169 99.718 49877.013 50867.788 195.987
n RW 50409.017 99.944 50077.339 50897.000 164.873
n H1 50408.670 99.943 50076.913 50896.481 164.818
n H2 50408.912 99.944 50077.948 50895.982 164.386
n H3 50437.379 100.000 50114.404 50917.094 161.747

TABLE VII
EXPERIMENTAL RESULTS FOR POWER-LAW GRAPHS WITH λ = 2.7 AND

AVERAGE DEGREE 5

A B Mean Perc. of best Minimum Maximum σ
55 F 3011.315 99.738 3005.965 3022.554 3.308
55 NF 3019.211 100.000 3008.989 3026.991 3.596
55 RW 2980.109 98.705 2969.928 2987.853 3.372
55 H1 2980.191 98.708 2969.948 2987.954 3.377
55 H2 2982.111 98.771 2972.243 2989.603 3.276
55 H3 3003.378 99.476 2997.927 3008.582 2.309
56 F 12793.147 93.138 12475.974 13190.481 153.404
56 NF 13735.759 100.000 13679.750 13781.684 20.349
56 RW 13534.701 98.536 13478.217 13580.439 20.018
56 H1 13534.736 98.537 13478.076 13580.664 20.042
56 H2 13538.208 98.562 13482.125 13583.686 19.938
56 H3 13567.524 98.775 13518.301 13609.670 18.139
n F 46328.091 81.009 44077.817 49146.477 1150.080
n NF 57188.476 100.000 57081.934 57304.162 45.304
n RW 56648.461 99.056 56526.905 56767.528 51.876
n H1 56648.330 99.055 56527.328 56767.581 51.869
n H2 56650.912 99.060 56530.570 56770.165 51.712
n H3 56678.879 99.109 56563.200 56795.721 50.489

TABLE VIII
EXPERIMENTAL RESULTS FOR POWER-LAW GRAPHS WITH λ = 2.7 AND

AVERAGE DEGREE 10

A B Mean Perc. of best Minimum Maximum σ
104 F 9124.481 99.661 9068.833 9168.929 21.113
104 NF 9128.352 99.704 9093.659 9156.773 12.420
104 RW 9125.727 99.675 9091.333 9153.804 12.458
104 H1 9125.678 99.675 9091.241 9153.888 12.460
104 H2 9127.180 99.691 9092.927 9155.113 12.398
104 H3 9155.475 100.000 9125.139 9180.442 10.894
n F 50858.047 87.630 49452.064 52578.884 758.606
n NF 58020.466 99.971 57883.655 58121.120 49.104
n RW 58005.910 99.946 57870.928 58105.437 49.140
n H1 58005.785 99.946 57870.597 58104.735 49.115
n H2 58006.970 99.948 57872.266 58106.013 49.120
n H3 58037.065 100.000 57904.662 58134.364 48.071



TABLE IX
EXPERIMENTAL RESULTS FOR CLUSTERED GRAPHS THAT HAVE CLIQUES

AS THEIR CLUSTERS

A B Mean Perc. of best Minimum Maximum σ
55 F 100.030 56.911 100.030 100.030 0.000
55 NF 102.935 58.563 102.870 103.034 0.030
55 RW 175.767 100.000 175.311 176.331 0.211
55 H1 157.599 89.663 157.261 158.017 0.174
55 H2 112.824 64.190 112.701 112.938 0.049
55 H3 101.041 57.486 101.032 101.054 0.004
56 F 106.030 25.259 106.030 106.030 0.000
56 NF 113.059 26.934 112.899 113.206 0.070
56 RW 419.766 100.000 418.520 420.919 0.520
56 H1 366.124 87.221 365.302 367.044 0.353
56 H2 263.615 62.800 263.009 264.106 0.222
56 H3 129.970 30.962 129.859 130.110 0.047
n F 106.030 6.147 106.030 106.030 0.000
n NF 165.639 9.603 165.320 165.956 0.136
n RW 1724.959 100.000 1718.010 1730.641 2.469
n H1 1268.211 73.521 1263.732 1271.687 1.674
n H2 614.545 35.627 613.530 615.662 0.434
n H3 418.431 24.257 418.201 418.762 0.115

TABLE X
EXPERIMENTAL RESULTS FOR CLUSTERED GRAPHS THAT HAVE G100,1/2

AS THEIR CLUSTERS

A B Mean Perc. of best Minimum Maximum σ
55 F 103.031 43.716 103.004 103.058 0.011
55 NF 105.593 44.803 105.485 105.718 0.047
55 RW 235.685 100.000 234.990 236.534 0.324
55 H1 203.065 86.159 202.585 203.573 0.221
55 H2 124.482 52.817 124.381 124.638 0.051
55 H3 101.830 43.206 101.819 101.842 0.005
56 F 104.499 15.740 104.481 104.517 0.008
56 NF 123.664 18.626 123.361 123.955 0.103
56 RW 663.923 100.000 662.021 665.353 0.709
56 H1 530.968 79.974 530.004 532.036 0.457
56 H2 349.951 52.710 349.500 350.451 0.191
56 H3 154.479 23.268 154.316 154.690 0.073
n F 107.441 3.407 107.231 107.754 0.106
n NF 213.300 6.763 212.950 213.704 0.158
n RW 3153.820 100.000 3138.785 3166.954 5.562
n H1 2349.913 74.510 2337.288 2359.542 4.724
n H2 951.127 30.158 948.444 953.171 0.999
n H3 497.740 15.782 497.048 498.619 0.318

TABLE XI
EXPERIMENTAL RESULTS FOR CLUSTERED GRAPHS THAT HAVE G100,1/5

AS THEIR CLUSTERS

A B Mean Perc. of best Minimum Maximum σ
55 F 103.110 27.427 103.082 103.137 0.013
55 NF 112.424 29.904 112.263 112.648 0.073
55 RW 375.948 100.000 375.029 377.084 0.453
55 H1 303.682 80.778 302.964 304.491 0.282
55 H2 153.582 40.852 153.335 153.787 0.098
55 H3 107.919 28.706 107.820 107.998 0.036
56 F 125.272 9.616 124.761 125.789 0.226
56 NF 150.315 11.538 149.833 150.693 0.186
56 RW 1302.779 100.000 1298.263 1306.771 1.798
56 H1 973.049 74.690 970.787 975.678 1.110
56 H2 506.337 38.866 505.410 507.813 0.446
56 H3 225.869 17.337 225.381 226.277 0.180
n F 170.164 2.397 169.353 171.078 0.408
n NF 300.069 4.227 299.385 300.726 0.274
n RW 7098.130 100.000 7063.073 7121.211 12.755
n H1 5816.386 81.943 5773.399 5849.654 16.886
n H2 1904.744 26.834 1895.577 1911.731 4.032
n H3 809.288 11.401 806.836 812.015 1.328

algorithms have bad performance according to Mean. RW is
the best algorithm; F and NF are the worst algorithms. Our
hybrid algorithms are between these two extreme behaviours.

f) Summary: For binomial and d-regular graphs, all algo-
rithms have close performance. Therefore normalized flooding
is a good choice in this case as it is faster than other

TABLE XII
PERCENTAGE OF DISCOVERED NODES BY THE k-WALKERS ALGORITHM

TO THE HYBRID ALGORITHM FOR POWER-LAW GRAPHS

Parameters Mean Minimum Maximum σ
λ = 2.1, average degree 5 75.469 3.490 100.000 33.948
λ = 2.1, average degree 10 77.399 3.026 100.000 32.857
λ = 2.7, average degree 5 71.490 0.146 100.000 38.505
λ = 2.7, average degree 10 75.945 0.448 100.000 35.159

TABLE XIII
PERCENTAGE OF DISCOVERED NODES BY THE k-WALKERS ALGORITHM

TO THE HYBRID ALGORITHM FOR CLUSTERED TOPOLOGIES

Clusters Mean Minimum Maximum σ
G100,1/5 99.828 98.638 100.173 0.407
G100,1/2 99.970 99.689 100.199 0.110
Cliques 99.966 99.699 100.198 0.114

algorithms. This means that it takes less time on average
to discover a node. For power-law graphs and large number
of queries flooding does not have good performance and
our hybrid algorithm outperforms it. For clustered topologies
flooding and normalized flooding are ineffective and random
walk has the best performance. The hybrid algorithms’ be-
haviour mediates between flooding and random walk.

D. Hybrid Algorithm vs. k-Walkers

Our proposed hybrid algorithm uses flooding to find k
distinct outer nodes and then starts k independent walkers from
those nodes. An alternative is to initiate k independent walkers
from the origin, i.e., the k-walkers algorithm. Intuitively, the
walkers have less overlap in the hybrid algorithm. Therefore
the hybrid algorithm increases the dispersion.

We conducted several experiments to compare the perfor-
mance of these two algorithms on power-law and clustered
topologies. We considered different number of walkers and
compared the percentage of discovered nodes by the two
algorithms with the same number of messages. For power-
law graphs, the hybrid algorithm outperforms k-walkers most
of the time. We considered 158 different values for k from 1
to 30000. Table XII shows the average, minimum, maximum,
and standard deviation of the percentage of nodes discovered
by the k-walkers algorithm to the hybrid algorithm for power-
law graphs.

According to these results, the k-walkers algorithm never
outperforms the hybrid algorithm and on average discovers
around 3/4 as many nodes as the hybrid algorithm. The
minimum percentage for all these settings is achieved for
k = 25500. For k = 1, the algorithms are equivalent and
the percentage is 100. For large number of walkers, the hybrid
algorithm is much more effective than the k-walkers algorithm.

For the clustered topologies, they have similar performance
and each of them outperforms the other on some settings.
We considered 69 distinct values for k from 1 to 1000. The
corresponding experimental results are shown in Table XIII.
On average, the hybrid algorithm outperforms the k-walkers
algorithm, but their performance is very close.



IV. CONCLUSIONS

In this paper we analyzed the performance of several
search algorithms on unstructured peer-to-peer networks. We
introduced a new hybrid algorithm that combines flooding
with random walk. It uses flooding to find sufficient, say k,
outer nodes and then starts k independent random walks from
those nodes. We compared this algorithm with classic search
algorithms such as flooding and random walk, on binomial
random graphs, regular random graphs, power-law graphs, and
clustered topologies. These are the common topologies for
peer-to-peer networks. Our experiments showed that

• For binomial random graphs and regular random graphs,
all algorithms have similar behaviour.

• For power-law graphs, flooding is effective for small
number of messages, but for large number of messages
our hybrid algorithm outperforms it.

• Flooding is ineffective for clustered topologies in which
random walk is the best algorithm. For these topologies,
our hybrid algorithm provides a compromise between
flooding and random walk.

We also compared the proposed hybrid algorithm with the
k-walker algorithm on power-law and clustered topologies.
The k-walker algorithm starts k independent walks from the
origin. Our experiments showed that while they have similar
performance on clustered topologies, the hybrid algorithm has
much better performance on power-law graphs.

V. ACKNOWLEDGMENTS

Part of this work was done while the second author was
visiting the Caesarea Rothschild Institute at the University of
Haifa, under the auspices of the University of Waterloo-Haifa
International Experience Program.

This work was made possible by the facilities of

• the Shared Hierarchical Academic Research Computing
Network SHARCNET (www.sharcnet.ca): 8,082 CPUs,

• the Atlantic Computational Excellence Network ACEnet
(www.ace-net.ca): 412 CPUs,

• the Department of Combinatorics and
Optimization, University of Waterloo
(www.math.uwaterloo.ca/CandO Dept): 80 CPUs.

REFERENCES

[1] A. Bonato. A survey of models of the web graph. In Proceedings of the
1st Workshop on Combinatorial and Algorithmic Aspects of Networking
(CAAN ’04), pages 159–172, 2004.

[2] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener. Graph structure in the web. In Proceedings
of the 9th International World Wide Web Conference, pages 309–320,
2000.

[3] E. Cohen and S. Shenker. Replication strategies in unstructured peer-to-
peer networks. Proceedings of the ACM SIGCOMM 2002 Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM ’02), 32(4):177–190, 2002.

[4] C. Gkantsidis, M. Mihail, and A. Saberi. Random walks in peer-to-
peer networks. In Proceedings of the 23rd Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM ’04),
volume 1, pages 120–130, 2004.

[5] C. Gkantsidis, M. Mihail, and A. Saberi. Hybrid search schemes for
unstructured peer-to-peer networks. In Proceedings of the 24th Annual
Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM ’05), volume 3, pages 1526–1537, 2005.

[6] S. Janson, T. Łuczak, and A. Ruciński. Random Graphs. Wiley-
Interscience Series in Discrete Mathematics and Optimization. John
Wiley & Sons, 2000.

[7] T. Łuczak and P. Prałat. Protean graphs. Internet Mathematics, 3(1):21–
40, 2006.

[8] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication
in unstructured Peer-to-Peer networks. In Proceedings of the 2002
International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS-02), volume 30, 1, pages 258–259, 2002.

[9] P. Prałat. A note on the diameter of protean graphs. Discrete
Mathematics. to appear.

[10] P. Prałat and N. Wormald. Growing protean graphs. Internet Mathemat-
ics. to appear.

[11] A. Ruciński and N. C. Wormald. Random graph processes with degree
restrictions. Combinatorics, Probability & Computing, 1:169–180, 1992.

[12] N. C. Wormald. Models of random regular graphs. In Surveys
in Combinatorics, 1993, Walker (Ed.), London Mathematical Society
Lecture Note Series 187, Cambridge University Press, volume 276,
pages 239–298. 1999.


